Computationally Assisted Engineering of Protein Cages

  • Maziar S. Ardejani
  • Brendan P. OrnerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1252)


A hybrid computational method incorporating topographic analysis of protein surfaces and free-energy calculations of protein-protein interactions in protein nanocages is described. This design strategy can be used to engineer protein cages for enhanced structural stability and assembly.

Key words

Protein engineering Computational design Protein-protein interactions Ferritins 


  1. 1.
    Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19:1025–1042CrossRefGoogle Scholar
  2. 2.
    Dahiyat BI, Mayo SL (1997) De novo protein design: fully automated sequence selection. Science 278:82–87PubMedCrossRefGoogle Scholar
  3. 3.
    Ardejani MS, Orner BP (2013) Obey the peptide assembly rules. Science 340:561–562PubMedCrossRefGoogle Scholar
  4. 4.
    Grigoryan G, Kim YH, Acharya R, Axelrod K, Jain RM, Willis L, Drndic M, Kikkawa JM, DeGrado WF (2011) Computational design of virus-like protein assemblies on carbon nanotube surfaces. Science 332:1071–1076PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    King NP, Sheffler W, Sawaya MR, Vollmar BS, Sumida JP, André I, Gonen T, Yeates TO, Baker D (2012) Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336:1171–1174PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ardejani MS, Li NX, Orner BP (2011) Stabilization of a protein nanocage through the plugging of a protein–protein interfacial water pocket. Biochemistry 50:4029–4037PubMedCrossRefGoogle Scholar
  7. 7.
    Yao H, Wang Y, Lovell S, Kumar R, Ruvinsky AM, Battaile KP, Vakser IA, Rivera M (2012) The structure of the BfrB–Bfd complex reveals protein–protein interactions enabling iron release from bacterioferritin. J Am Chem Soc 134(32):13470–13481PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Tosha T, Ng H-L, Bhattasali O, Alber T, Theil EC (2010) Moving metal ions through ferritin − protein nanocages from three-fold pores to catalytic sites. J Am Chem Soc 132:14562–14569PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Mendel D, Ellman JA, Chang Z, Veenstra DL, Kollman PA, Schultz PG (1992) Probing protein stability with unnatural amino acids. Science 256:1798–1802PubMedCrossRefGoogle Scholar
  10. 10.
    Karpusas M, Baase WA, Matsumura M, Matthews BW (1989) Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants. Proc Natl Acad Sci U S A 86:8237–8241PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Saito M, Kono H, Morii H, Uedaira H, Tahirov TH, Ogata K, Sarai A (2000) Cavity-filling mutations enhance protein stability by lowering the free energy of native state. J Phys Chem B 104:3705–3711CrossRefGoogle Scholar
  12. 12.
    Ishikawa K, Nakamura H, Morikawa K, Kanaya S (1993) Stabilization of Escherichia coli ribonuclease HI by cavity-filling mutations within a hydrophobic core. Biochemistry 32:6171–6178PubMedCrossRefGoogle Scholar
  13. 13.
    Eijsink VGH, Dijkstra BW, Vriend G, van der Zee JR, Vettman OR, van der Vinne B, van den Burg B, Kempe S, Venema G (1992) The effect of cavity-filling mutations on the thermostability of Bacillus stearothermophilus neutral protease. Protein Eng 5:421–426PubMedCrossRefGoogle Scholar
  14. 14.
    Akasako A, Haruki M, Oobatake M, Kanaya S (1997) Conformational stabilities of Escherichia coli RNase HI variants with a series of amino acid substitutions at a cavity within the hydrophobic core. J Biol Chem 272:18686–18693PubMedCrossRefGoogle Scholar
  15. 15.
    Kono H, Saito M, Sarai A (2000) Stability analysis for the cavity-filling mutations of the Myb DNA-binding domain utilizing free-energy calculations. Proteins 38:197–209PubMedCrossRefGoogle Scholar
  16. 16.
    Ohmura T, Ueda T, Ootsuka K, Saito M, Imoto T (2001) Stabilization of hen egg white lysozyme by a cavity-filling mutation. Protein Sci 10:313–320PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Tanaka M, Chon H, Angkawidjaja C, Koga Y, Takano K, Kanaya S (2010) Protein core adaptability: crystal structures of the cavity-filling variants of Escherichia coli RNase HI. Protein Pept Lett 17:1163–1169PubMedCrossRefGoogle Scholar
  18. 18.
    Shortle D, Stites WE, Meeker AK (1990) Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry 29:8033–8041PubMedCrossRefGoogle Scholar
  19. 19.
    Ardejani MS, Chok XL, Foo CJ, Orner BP (2013) Complete shift of ferritin oligomerization toward nanocage assembly via engineered protein-protein interactions. Chem Commun 49:3528–3530CrossRefGoogle Scholar
  20. 20.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Eric FP, Thomas DG, Conrad CH, Gregory SC, Daniel MG, Elaine CM, Thomas EF (2004) UCSF chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  22. 22.
    Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:W382–W388PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Binkowski TA, Naghibzadeh S, Liang J (2003) CASTp: Computed Atlas of Surface Topography of proteins. Nucleic Acids Res 31:3352–3355PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  25. 25.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  26. 26.
    O’Neil KT, DeGrado WF (1990) How calmodulin binds its targets: sequence independent recognition of amphiphilic [alpha]-helices. Trends Biochem Sci 15:59–64PubMedCrossRefGoogle Scholar
  27. 27.
    Gellman SH (2002) On the role of methionine residues in the sequence-independent recognition of nonpolar protein surfaces. Biochemistry 30:6633–6636CrossRefGoogle Scholar
  28. 28.
    Hu D, Qin Z, Xue B, Fink AL, Uversky VN (2008) Effect of methionine oxidation on the structural properties, conformational stability, and aggregation of immunoglobulin light chain LEN. Biochemistry 47:8665–8677PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Chemistry, School of Natural and Mathematical SciencesKing’s College LondonLondonUK
  2. 2.Department of Chemistry, School of Biomedical SciencesKing’s College LondonLondonUK

Personalised recommendations