Skip to main content

Determining the Relaxivity Values of Protein Cage-Templated Nanoparticles Using Magnetic Resonance Imaging

  • Protocol
  • First Online:
Protein Cages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1252))

Abstract

The application of magnetic resonance imaging (MRI) is often limited by low magnetic relaxivity of currently used contrast agents. This problem can be addressed by developing more sensitive contrast agents by synthesizing new types of metal complex or metallic nanoparticles. Protein cage has been used as a template in biological synthesis of magnetic nanoparticles. The magnetic nanoparticle-protein cage composites have been reported to have high magnetic relaxivity, which implies their potential application as an MRI contrast agent. The magnetic relaxivity is determined by measuring longitudinal and transverse magnetic relaxivities of the potential agent. The commonly performed techniques are field-cycling NMR relaxometry (also known as variable field relaxometry or nuclear magnetic relaxation dispersion (NMRD) profiling) and in vitro or in vivo MRI relaxometry. Here, we describe techniques for the synthesis of nanoparticle-protein cage composite and determination of their magnetic relaxivities by in vitro MR image acquisition and data processing. In this method, longitudinal and transverse relaxivities are calculated by measuring relaxation rates of water hydrogen nuclei at different nanoparticle-protein cage composite concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caravan P, Ellison JJ, McMurry TJ, Lauffer RL (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  PubMed  CAS  Google Scholar 

  2. Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  PubMed  CAS  Google Scholar 

  3. Lu J, Ma S, Sun J, Xia C, Liu C, Wang Z, Zhao X, Gao F, Gong Q, Song B, Shuai X, Ai H, Gu Z (2009) Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials 30:2919–2928

    Article  PubMed  CAS  Google Scholar 

  4. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    Article  PubMed  CAS  Google Scholar 

  5. Kubicek V, Toth E (2009) Design and function of metal complexes as contrast agents in MRI. Adv Inorg Chem 61:63–129

    Article  CAS  Google Scholar 

  6. Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 3:1266–1276

    Google Scholar 

  7. Bleicher AG, Kanal E (2008) Assessment of adverse reaction rates to a newly approved MRI contrast agent: review of 23,553 administrations of gadobenate dimeglumine. Am J Roentgenol 191:W307–W311

    Article  Google Scholar 

  8. Wang YXJ (2011) Super paramagnetic iron oxide based MRI contrast agents: current status of clinical applications. Quant Imaging Med Surg 1:35–40

    PubMed  PubMed Central  Google Scholar 

  9. Yalappu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, Chauhan SC (2010) Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 32:1890–1905

    Article  Google Scholar 

  10. Huang J, Zhong X, Wang L, Yang L, Mao H (2012) Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2:86–102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Koylu MZ, Asubay S, Yilmaz A (2009) Determination of proton relaxivities of Mn(II), Cu(II) and Cr(III) added to solutions of serum proteins. Molecules 14:1537–1545

    Article  PubMed  CAS  Google Scholar 

  12. Yang JJ, Yang J, Wei L, Zurkiya O, Yang W, Li S, Zou J, Maniccia AL, Mao H, Zhao F, Malchow R, Zhao S, Johnson J, Hu X, Krogstad E, Liu ZR (2008) Rational design of protein-based MRI contrast agents. J Am Chem Soc 130:9260–9267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Galvez N, Fernandez B, Valero E, Sanchez P, Cuesta R, Dominguez-Vera JM (2008) Apoferritin as a nanoreactor for preparing metallic nanoparticles. Comp Rendus Chim 11:1207–1212

    Article  CAS  Google Scholar 

  14. Yoshizawa K, Iwahori K, Sugimoto K, Yamashita I (2006) Fabrication of gold sulfide nanoparticles using the protein cage of apoferritin. Chem Lett 35:1192–1193

    Article  CAS  Google Scholar 

  15. Aime S, Frullano L, Crich SG (2002) Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging. Angew Chem Int Ed 41:1017–1019

    Article  CAS  Google Scholar 

  16. Crich SG, Bussolati B, Tei L, Grange C, Esposito G, Lanzardo S, Camussi G, Aime S (2006) Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe. Cancer Res 66:9196–9201

    Article  Google Scholar 

  17. Sanchez P, Valero E, Galvez N, Dominguez-Vera JM, Marinone M, Poletti G, Corti M, Lascialfari A (2009) MRI relaxation properties of water-soluble apoferritin-encapsulated gadolinium oxide-hydroxide nanoparticles. Dalton Trans 5:800–804

    Article  PubMed  Google Scholar 

  18. Uchida M, Terashima M, Cunningham CH, Suzuki Y, Willitis DA, Yang PC, Tsao PS, McConnell MV, Young MJ, Douglas T (2008) A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magn Reson Med 60:1073–1081

    Article  PubMed  CAS  Google Scholar 

  19. Sana B, Johnson E, Sheah K, Poh CL, Lim S (2010) Iron based ferritin nanocore as a contrast agent. Biointerphases 5:AF48–AF52

    Article  Google Scholar 

  20. Sana B, Poh CL, Lim S (2012) A manganese-ferritin nanocomposites as an ultrasensitive T2 contrast agent. Chem Commun 48:862–864

    Article  CAS  Google Scholar 

  21. Sana B, Calista M, Lim S (2012) Protein cage assisted metal-protein nanocomposite synthesis: optimization of loading conditions. AIP Conf Proc 1502:82–96

    Article  CAS  Google Scholar 

  22. Qiu H, Dong X, Sana B, Peng T, Parapelle D, Chen P, Lim S (2013) Ferritin-templated synthesis and self-assembly of Pt nanoparticles on monolithic porous graphene network for electrocatalysis in fuel cell. ACS Appl Mater Interfaces 5:782–787

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Cher Heng Tan at Tan Tock Seng Hospital, Singapore, for technical advices on magnetic resonance imaging. The work is supported by Singapore National Medical Research Council New Investigator Grant (NMRC/NIG/1073/2012)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sierin Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sana, B., Lim, S. (2015). Determining the Relaxivity Values of Protein Cage-Templated Nanoparticles Using Magnetic Resonance Imaging. In: Orner, B. (eds) Protein Cages. Methods in Molecular Biology, vol 1252. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2131-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2131-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2130-0

  • Online ISBN: 978-1-4939-2131-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics