Ferritin Encapsulation and Templated Synthesis of Inorganic Nanoparticles

  • Katherine W. Pulsipher
  • Ivan J. DmochowskiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1252)


Understanding how inorganic nanoparticles interact with proteins is paramount to their safe and effective use in vivo. Ordered protein-inorganic nanomaterial assemblies will also enable the creation of patterned structures with useful physical properties. Thermophilic ferritin (tF) from Archaeoglobus fulgidus has unique structural features and self-assembly properties that facilitate stable but also reversible interaction with gold nanoparticles (AuNPs). In this chapter we describe how to express and purify tF and induce its assembly around AuNPs. We also describe methods for characterizing the tF-AuNP complex as well as templating NP growth within the protein cavity.

Key words

Ferritin assembly Protein self-assembly Nanoparticle-protein interaction Biomineralization Gold nanoparticle Ferritin Nano-bio interface 



The authors thank Eric Johnson for providing the Archaeoglobus fulgidus ferritin gene in the pAF0834 plasmid and Jeffery Saven for use of instruments. We also thank Joe Swift and Jasmina Cheung-Lau for doing the foundational work of this project. This work was supported by NSF CHE 0548188 and DMR-0520020.


  1. 1.
    Michalet X, Pinaud FF, Bentolila L et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Huang XH, El-Sayed IH, Qian W et al (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120PubMedCrossRefGoogle Scholar
  3. 3.
    Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52PubMedCrossRefGoogle Scholar
  4. 4.
    Swift J, Wehbi WA, Kelly BD et al (2006) Design of functional ferritin-like proteins with hydrophobic cavities. J Am Chem Soc 128:6611–6619PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang L, Swift J, Butts CA et al (2007) Structure and activity of apoferritin-stabilized gold nanoparticles. J Inorg Biochem 101:1719–1729PubMedCrossRefGoogle Scholar
  6. 6.
    Butts CA, Swift J, Kang S-G et al (2008) Directing noble metal ion chemistry within a designed ferritin protein. Biochemistry 47:12729–12739PubMedCrossRefGoogle Scholar
  7. 7.
    Swift J, Butts CA, Cheung-Lau J et al (2009) Efficient self-assembly of Archaeoglobus fulgidus ferritin around metallic cores. Langmuir 25:5219–5225PubMedCrossRefGoogle Scholar
  8. 8.
    Cheung-Lau JC, Liu D, Pulsipher KW et al (2013) Engineering a well-ordered, functional protein-gold nanoparticle assembly. J Inorg Biochem
  9. 9.
    Liu X, Wei W, Yuan Q et al (2012) Apoferritin-CeO2 nano-truffle that has excellent artificial redox enzyme activity. Chem Commun 48:3155–3157CrossRefGoogle Scholar
  10. 10.
    Hennequin B, Turyanska L, Ben T et al (2008) Aqueous near-infrared fluorescent composites based on apoferritin-encapsulated PbS quantum dots. Adv Mater 20:3592–3596CrossRefGoogle Scholar
  11. 11.
    Zheng B, Zettsu N, Fukuta M et al (2011) Versatile protein-based bifunctional nano-systems (encapsulation and directed assembly): selective nanoscale positioning of gold nanoparticle-viral protein hybrids. Chem Phys Lett 506:76–80CrossRefGoogle Scholar
  12. 12.
    Sun J, DuFort C, Daniel M-C et al (2007) Core-controlled polymorphism in virus-like particles. Proc Natl Acad Sci U S A 104:1354–1359PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Aniagyei SE, Kennedy CJ, Stein B et al (2009) Synergistic effects of mutations and nanoparticle templating in the self-assembly of cowpea chlorotic mottle virus capsids. Nano Lett 9:393–398PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Capehart SL, Coyle MP, Glasgow JE et al (2013) Controlled integration of gold nanoparticles and organic fluorophores using synthetically modified MS2 viral capsids. J Am Chem Soc 135:3011–3016PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Dragnea B, Chen C, Kwak E-S et al (2003) Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses. J Am Chem Soc 125:6374–6375PubMedCrossRefGoogle Scholar
  16. 16.
    Loo L, Guenther RH, Basnayake VR et al (2006) Controlled encapsidation of gold nanoparticles by a viral protein shell. J Am Chem Soc 128:4502–4503PubMedCrossRefGoogle Scholar
  17. 17.
    Chen C, Daniel M-C, Quinkert ZT et al (2006) Nanoparticle-templated assembly of viral protein cages. Nano Lett 6:611–615PubMedCrossRefGoogle Scholar
  18. 18.
    Daniel M-C, Tsvetkova IB, Quinkert ZT et al (2010) Role of surface charge density in nanoparticle-templated assembly of bromovirus protein cages. ACS Nano 4:3853–3860PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Dixit SK, Goicochea NL, Daniel M-C et al (2006) Quantum dot encapsulation in viral capsids. Nano Lett 6:1993–1999PubMedCrossRefGoogle Scholar
  20. 20.
    Loo L, Guenther RH, Lommel SA et al (2007) Encapsidation of nanoparticles by red clover necrotic mosaic virus. J Am Chem Soc 129:11111–11117PubMedCrossRefGoogle Scholar
  21. 21.
    Huang X, Bronstein LM, Retrum J et al (2007) Self-assembled virus-like particles with magnetic cores. Nano Lett 7:2407–2416PubMedCrossRefGoogle Scholar
  22. 22.
    Johnson E, Cascio D, Sawaya MR et al (2005) Crystal structures of a tetrahedral open pore ferritin from the hyperthermophilic archaeon Archaeoglobus fulgidus. Structure 13:637–648PubMedCrossRefGoogle Scholar
  23. 23.
    Kim M, Rho Y, Jin KS et al (2011) pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly. Biomacromolecules 12:1629–1640PubMedCrossRefGoogle Scholar
  24. 24.
    Haiss W, Thanh NTK, Aveyard J et al (2007) Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem 79:4215–4221PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations