Advertisement

Protein Cages pp 115-137 | Cite as

Material Properties of Viral Nanocages Explored by Atomic Force Microscopy

  • Mariska G. M. van Rosmalen
  • Wouter H. RoosEmail author
  • Gijs J. L. Wuite
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1252)

Abstract

Single-particle nanoindentation by atomic force microscopy (AFM) is an emergent technique to characterize the material properties of nano-sized proteinaceous systems. AFM uses a very small tip attached to a cantilever to scan the surface of the substrate. As a result of the sensitive feedback loop of AFM, the force applied by the tip on the substrate during scanning can be controlled and monitored. By accurately controlling this scanning force, topographical maps of fragile substrates can be acquired to study the morphology of the substrate. In addition, mechanical properties of the substrate like stiffness and breaking point can be determined by using the force spectroscopy capability of AFM. Here we discuss basics of AFM operation and how this technique is used to determine the structure and mechanical properties of protein nanocages, in particular viral particles. Knowledge of morphology as well as mechanical properties is essential for understanding viral life cycles, including genome packaging, capsid maturation, and uncoating, but also contributes to the development of diagnostics, vaccines, imaging modalities, and targeted therapeutic devices based on viruslike particles.

Key words

Virus Atomic force microscopy Nanoindentation Mechanical properties Force spectroscopy Biophysics 

Notes

Acknowledgments

We thank Prof. G. Nemerow (Scripps, La Jolla) for kindly providing us with the adenoviral particles. WHR is supported by a VIDI grant from the Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO). GJLW is supported by a Fundamenteel Onderzoek der Materie Projectruimte grant.

References

  1. 1.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933PubMedCrossRefGoogle Scholar
  2. 2.
    Colton RJ, Baselt DR, Dufrene YF et al (1997) Scanning probe microscopy. Curr Opin Chem Biol 1:370–377PubMedCrossRefGoogle Scholar
  3. 3.
    Walters DA, Cleveland JP, Thomson NH et al (1996) Short cantilevers for atomic force microscopy. Rev Sci Instrum 67:3583–3590CrossRefGoogle Scholar
  4. 4.
    Santos NC, Castanho MA (2004) An overview of the biophysical applications of atomic force microscopy. Biophys Chem 107:133–149PubMedCrossRefGoogle Scholar
  5. 5.
    Hafner JH, Cheung CL, Woolley AT et al (2001) Structural and functional imaging with carbon nanotube AFM probes. Prog Biophys Mol Biol 77:73–110PubMedCrossRefGoogle Scholar
  6. 6.
    Wong SS, Harper JD, Lansbury PT et al (1998) Carbon nanotube tips: high-resolution probes for imaging biological systems. J Am Chem Soc 120:603–604CrossRefGoogle Scholar
  7. 7.
    Churnside AB, Sullan RM, Nguyen DM et al (2012) Routine and timely sub-picoNewton force stability and precision for biological applications of atomic force microscopy. Nano Lett 12:3557–3561PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Cleveland JP, Manne S, Bocek D et al (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:403–405CrossRefGoogle Scholar
  9. 9.
    Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967–3969CrossRefGoogle Scholar
  10. 10.
    Sader JE (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys 84:64–76CrossRefGoogle Scholar
  11. 11.
    Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873CrossRefGoogle Scholar
  12. 12.
    García R (2010) Amplitude modulation AFM in liquid. Amplitude modulation atomic force microscopy. Wiley, Weinheim, pp 77–90CrossRefGoogle Scholar
  13. 13.
    García R (2010) Amplitude modulation atomic force microscopy. Wiley, WeinheimCrossRefGoogle Scholar
  14. 14.
    de Pablo PJ, Colchero J, Gomez-Herrero J et al (1998) Jumping mode scanning force microscopy. Appl Phys Lett 73:3300–3302CrossRefGoogle Scholar
  15. 15.
    Berquand A (2011) Quantitative imaging of living biological samples by peakforce QNM atomic force microscopy. Bruker Application Note #135Google Scholar
  16. 16.
    Baclayon M, Roos WH, Wuite GJL (2010) Sampling protein form and function with the atomic force microscope. Mol Cell Proteomics 9:1678–1688PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Florin E, Moy V, Gaub H (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417PubMedCrossRefGoogle Scholar
  18. 18.
    Fotiadis D, Scheuring S, Muller SA et al (2002) Imaging and manipulation of biological structures with the AFM. Micron 33:385–397PubMedCrossRefGoogle Scholar
  19. 19.
    Lee YJ, Yi H, Kim WJ et al (2009) Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324:1051–1055PubMedGoogle Scholar
  20. 20.
    Nam KT, Kim DW, Yoo PJ et al (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888PubMedCrossRefGoogle Scholar
  21. 21.
    Nam KT, Wartena R, Yoo PJ et al (2008) Stamped microbattery electrodes based on self-assembled M13 viruses. Proc Natl Acad Sci U S A 105:17227–17231PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Grasso S, Santi L (2010) Viral nanoparticles as macromolecular devices for new therapeutic and pharmaceutical approaches. Int J Physiol Pathophysiol Pharmacol 2:161–178PubMedPubMedCentralGoogle Scholar
  23. 23.
    Hooker JM, Kovacs EW, Francis MB (2004) Interior surface modification of bacteriophage MS2. J Am Chem Soc 126:3718–3719PubMedCrossRefGoogle Scholar
  24. 24.
    Huang Z, Santi L, LePore K et al (2006) Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine 24:2506–2513PubMedCrossRefGoogle Scholar
  25. 25.
    Schmidt U, Gunther C, Rudolph R et al (2001) Protein and peptide delivery via engineered polyomavirus-like particles. FASEB J 15:1646–1648PubMedGoogle Scholar
  26. 26.
    Storni T, Ruedl C, Schwarz K et al (2004) Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J Immunol 172:1777–1785PubMedCrossRefGoogle Scholar
  27. 27.
    Tanaka T, Shimura H, Sasaki T et al (2004) Gallbladder cancer treatment using adenovirus expressing the HGF/NK4 gene in a peritoneal implantation model. Cancer Gene Ther 11:431–440PubMedCrossRefGoogle Scholar
  28. 28.
    Yamada T, Iwasaki Y, Tada H et al (2003) Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nat Biotechnol 21:885–890PubMedCrossRefGoogle Scholar
  29. 29.
    Knez M, Sumser MP, Bittner AM et al (2004) Binding the tobacco mosaic virus to inorganic surfaces. Langmuir 20:441–447PubMedCrossRefGoogle Scholar
  30. 30.
    Kuznetsov YG, Low A, Fan H et al (2005) Atomic force microscopy investigation of isolated virions of murine leukemia virus. J Virol 79:1970–1974PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lyubchenko YL, Oden PI, Lampner D et al (1993) Atomic force microscopy of DNA and bacteriophage in air, water and propanol: the role of adhesion forces. Nucleic Acids Res 21:1117–1123PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kienberger F, Zhu R, Moser R et al (2004) Dynamic force microscopy for imaging of viruses under physiological conditions. Biol Proced Online 6:120–128PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Muller DJ, Amrein M, Engel A (1997) Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 119:172–188PubMedCrossRefGoogle Scholar
  34. 34.
    Snijder J, Reddy VS, May ER et al (2013) Integrin and defensin modulate the mechanical properties of adenovirus. J Virol 87:2756–2766PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Roos WH (2011) How to perform a nanoindentation experiment on a virus. Methods Mol Biol 783:251–264PubMedCrossRefGoogle Scholar
  36. 36.
    Dutt S, Tanha J, Evoy S et al (2013) Immobilization of P22 bacteriophage Tailspike protein on Si surface for optimized salmonella capture. J Anal Bioanal Tech 7:2Google Scholar
  37. 37.
    Gray JJ (2004) The interaction of proteins with solid surfaces. Curr Opin Struct Biol 14:110–115PubMedCrossRefGoogle Scholar
  38. 38.
    Zlotnick A, Aldrich R, Johnson JM et al (2000) Mechanism of capsid assembly for an icosahedral plant virus. Virology 277:450–456PubMedCrossRefGoogle Scholar
  39. 39.
    Carrasco C, Carreira A, Schaap IA et al (2006) DNA-mediated anisotropic mechanical reinforcement of a virus. Proc Natl Acad Sci U S A 103:13706–13711PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Roos WH, Radtke K, Kniesmeijer E et al (2009) Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc Natl Acad Sci U S A 106:9673–9678PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Roos WH, Gibbons MM, Arkhipov A et al (2010) Squeezing protein shells: how continuum elastic models, molecular dynamics simulations, and experiments coalesce at the nanoscale. Biophys J 99:1175–1181PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Klug WS, Bruinsma RF, Michel JP et al (2006) Failure of viral shells. Phys Rev Lett 97:228101PubMedCrossRefGoogle Scholar
  43. 43.
    Milling A, Mulvaney P, Larson I (1996) Direct measurement of repulsive van der Waals interactions using an atomic force microscope. J Colloid Interface Sci 180:460–465CrossRefGoogle Scholar
  44. 44.
    Cappella B, Dietler G (1999) Force-distance curves by atomic force microscopy. Surf Sci Rep 34:1–104CrossRefGoogle Scholar
  45. 45.
    Gibbons MM, Klug WS (2007) Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys Rev E Stat Nonlin Soft Matter Phys 75:031901PubMedCrossRefGoogle Scholar
  46. 46.
    Ivanovska IL, de Pablo PJ, Ibarra B et al (2004) Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc Natl Acad Sci U S A 101:7600–7605PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Michel JP, Ivanovska IL, Gibbons MM et al (2006) Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc Natl Acad Sci U S A 103:6184–6189PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Snijder J, Ivanovska IL, Baclayon M et al (2012) Probing the impact of loading rate on the mechanical properties of viral nanoparticles. Micron 43:1343–1350PubMedCrossRefGoogle Scholar
  49. 49.
    Roos WH, Bruinsma R, Wuite GJL (2010) Physical virology. Nat Phys 6:733–743CrossRefGoogle Scholar
  50. 50.
    Mateu MG (2012) Mechanical properties of viruses analyzed by atomic force microscopy: a virological perspective. Virus Res 168:1–22PubMedCrossRefGoogle Scholar
  51. 51.
    Roos WH, Ivanovska IL, Evilevitch A et al (2007) Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms. Cell Mol Life Sci 64:1484–1497PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Carrasco C, Castellanos M, de Pablo PJ et al (2008) Manipulation of the mechanical properties of a virus by protein engineering. Proc Natl Acad Sci U S A 105:4150–4155PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Castellanos M, Perez R, Carrasco C et al (2012) Mechanical elasticity as a physical signature of conformational dynamics in a virus particle. Proc Natl Acad Sci U S A 109:12028–12033PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Snijder J, Uetrecht C, Rose RJ et al (2013) Probing the biophysical interplay between a viral genome and its capsid. Nat Chem 5:502–509PubMedCrossRefGoogle Scholar
  55. 55.
    Hernando-Perez M, Miranda R, Aznar M et al (2012) Direct measurement of phage phi29 stiffness provides evidence of internal pressure. Small 8:2366–2370PubMedCrossRefGoogle Scholar
  56. 56.
    Evilevitch A, Roos WH, Ivanovska IL et al (2011) Effects of salts on internal DNA pressure and mechanical properties of phage capsids. J Mol Biol 405:18–23PubMedCrossRefGoogle Scholar
  57. 57.
    Klug WS, Roos WH, Wuite GJ (2012) Unlocking internal prestress from protein nanoshells. Phys Rev Lett 109:168104PubMedCrossRefGoogle Scholar
  58. 58.
    Lidmar J, Mirny L, Nelson DR (2003) Virus shapes and buckling transitions in spherical shells. Phys Rev E 68:051910CrossRefGoogle Scholar
  59. 59.
    Carrasco C, Luque A, Hernando-Pérez M et al (2011) Built-in mechanical stress in viral shells. Biophys J 100:1100–1108PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Baclayon M, Shoemaker GK, Uetrecht C et al (2011) Prestress strengthens the shell of Norwalk virus nanoparticles. Nano Lett 11:4865–4869PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Roos WH, Gertsman I, May ER et al (2012) Mechanics of bacteriophage maturation. Proc Natl Acad Sci U S A 109:2342–2347PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Ortega-Esteban A, Perez-Berna AJ, Menendez-Conejero R et al (2013) Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci Rep 3:1434PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Schaap IAT, Eghiaian F, des Georges A et al (2012) Effect of envelope proteins on the mechanical properties of influenza virus. J Biol Chem 287:41078–41088PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Heinhorst S, Cannon GC (2008) A new, leaner and meaner bacterial organelle. Nat Struct Mol Biol 15:897–898PubMedCrossRefGoogle Scholar
  65. 65.
    Carvalho FA, Carneiro FA, Martins IC et al (2012) Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J Virol 86:2096–2108PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ebner A, Wildling L, Kamruzzahan AS et al (2007) A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjug Chem 18:1176–1184PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mariska G. M. van Rosmalen
    • 1
  • Wouter H. Roos
    • 1
    • 2
    Email author
  • Gijs J. L. Wuite
    • 1
  1. 1.Natuur- en Sterrenkunde and LaserLabVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Natuur- en Sterrenkunde/FEWVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations