Skip to main content

Encapsulation of Nanoparticles in Virus Protein Shells

  • Protocol
  • First Online:
Book cover Protein Cages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1252))

Abstract

The self-assembly of virus-like particles may lead to materials which combine the unique characteristics of viruses, such as precise size control and responsivity to environmental cues, with the properties of abiotic cargo. For a few different viruses, shell proteins are amenable to the in vitro encapsulation of non-genomic cargo in a regular protein cage. In this chapter we describe protocols of high-efficiency in vitro self-assembly around functionalized gold nanoparticles for three examples of icosahedral and non-icosahedral viral protein cages derived from a plant virus, an animal virus, and a human retrovirus. These protocols can be readily adapted with small modifications to work for a broad variety of inorganic and organic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Douglas T, Young M (2006) Viruses: making friends with old foes. Science 312:873–875

    Article  PubMed  CAS  Google Scholar 

  2. Steinmetz NF, Manchester M (2011) Viral nanoparticles: tools for materials science and biomedicine. Pan Stanford Publishing, Singapore

    Google Scholar 

  3. Plummer EM, Manchester M (2011) Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. WIREs Nanomed Nanobiotechnol 3:174–196

    Article  CAS  Google Scholar 

  4. Lee LA, Wang Q (2006) Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomedicine 2:137–149

    Article  PubMed  CAS  Google Scholar 

  5. Fiedler JD, Brown SD, Lau JL et al (2010) RNA-directed packaging of enzymes within virus-like particles. Angew Chem Int Ed 49:9648–9651

    Article  CAS  Google Scholar 

  6. Comellas-Aragones M, Engelkamp H, Claessen VI et al (2007) A virus-based single-enzyme nanoreactor. Nat Nanotechnol 2:635–639

    Article  PubMed  CAS  Google Scholar 

  7. Patterson DP, Schwarz B, El-Boubbou K et al (2012) Virus-like particle nanoreactors: programmed encapsulation of the thermostable CelB glycosidase inside the P22 capsid. Soft Matter 8:10158–10166

    Article  CAS  Google Scholar 

  8. Stephanopoulos N, Carrico ZM, Francis MB (2009) Nanoscale integration of sensitizing chromophores and porphyrins with bacteriophage MS2. Angew Chem Int Ed 48:9498–9502

    Article  CAS  Google Scholar 

  9. Nam YS, Magyar AP, Lee D et al (2010) Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nat Nanotechnol 5:340–344

    Article  PubMed  CAS  Google Scholar 

  10. Nam KT, Kim D-W, Yoo PJ et al (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888

    Article  PubMed  CAS  Google Scholar 

  11. Niu Z, Liu J, Lee LA et al (2007) Biological templated synthesis of water-soluble conductive polymeric nanowires. Nano Lett 7:3729–3733

    Article  PubMed  CAS  Google Scholar 

  12. DuFort CC, Dragnea B (2010) Bio-enabled synthesis of metamaterials. Annu Rev Phys Chem 61:323–344

    Article  PubMed  CAS  Google Scholar 

  13. Kostiainen MA, Hiekkataipale P, Laiho A et al (2013) Electrostatic assembly of binary nanoparticle superlattices using protein cages. Nat Nanotechnol 8:52

    Article  PubMed  CAS  Google Scholar 

  14. Carette N, Engelkamp H, Akpa E et al (2007) A virus-based biocatalyst. Nat Nanotechnol 2:226–229

    Article  PubMed  CAS  Google Scholar 

  15. Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155

    Article  CAS  Google Scholar 

  16. Jung B, Rao ALN, Anvari B (2011) Optical nano-constructs composed of genome-depleted brome mosaic virus doped with a near infrared chromophore for potential biomedical applications. ACS Nano 5:1243–1252

    Article  PubMed  CAS  Google Scholar 

  17. Tsvetkova I, Chen C, Rana S et al (2012) Pathway switching in templated virus-like particle assembly. Soft Matter 8:4571–4577

    Article  Google Scholar 

  18. Cadena-Nava RD, Hu YF, Garmann RF et al (2011) Exploiting fluorescent polymers to probe the self-assembly of virus-like particles. J Phys Chem B 115:2386–2391

    Article  PubMed  CAS  Google Scholar 

  19. Hu Y, Zandi R, Anavitarte A et al (2008) Packaging of a polymer by a viral capsid: the interplay between polymer length and capsid size. Biophys J 94:1428–1436

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Porterfield JZ, Dhason MS, Loeb DD et al (2010) Full-length hepatitis B virus core protein packages viral and heterologous RNA with similarly high levels of cooperativity. J Virol 84:7174–7184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Daniel M-C, Tsvetkova IB, Quinkert ZT et al (2010) Role of surface charge density in nanoparticle-templated assembly of bromovirus protein cages. ACS Nano 4:3853–3860

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Mout R, Moyano DF, Rana S et al (2012) Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41:2539–2544

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Thomas M, Klibanov AM (2003) Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci 100:9138–9143

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Ghosh P, Han G, De M et al (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    Article  PubMed  CAS  Google Scholar 

  25. Cognet L, Tardin C, Boyer D et al (2003) Single metallic nanoparticle imaging for protein detection in cells. Proc Natl Acad Sci 100:11350–11355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Berciaud S, Cognet L, Blab GA et al (2004) Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys Rev Lett 93:257402

    Article  PubMed  Google Scholar 

  27. Haiss W, Thanh NTK, Aveyard J et al (2007) Determination of size and concentration of gold nanoparticles from UV−Vis spectra. Anal Chem 79:4215–4221

    Article  PubMed  CAS  Google Scholar 

  28. Boyer D, Tamarat P, Maali A et al (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–1163

    Article  PubMed  CAS  Google Scholar 

  29. Capehart SL, Coyle MP, Glasgow JE et al (2013) Controlled integration of gold nanoparticles and organic fluorophores using synthetically modified MS2 viral capsids. J Am Chem Soc 135:3011–3016

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Blum AS, Soto CM, Wilson CD et al (2004) Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles. Nano Lett 4:867–870

    Article  CAS  Google Scholar 

  31. Slocik JM, Naik RR, Stone MO et al (2005) Viral templates for gold nanoparticle synthesis. J Mater Chem 15:749–753

    Article  CAS  Google Scholar 

  32. Radloff C, Vaia RA, Brunton J et al (2005) Metal nanoshell assembly on a virus bioscaffold. Nano Lett 5:1187–1191

    Article  PubMed  CAS  Google Scholar 

  33. Chen C, Daniel MC, Quinkert ZT et al (2006) Nanoparticle-templated assembly of viral protein cages. Nano Lett 6:611–615

    Article  PubMed  CAS  Google Scholar 

  34. Loo L, Guenther RH, Basnayake VR et al (2006) Controlled encapsidation of gold nanoparticles by a viral protein shell. J Am Chem Soc 128:4502–4503

    Article  PubMed  CAS  Google Scholar 

  35. Wang TJ, Zhang ZP, Gao D et al (2011) Encapsulation of gold nanoparticles by simian virus 40 capsids. Nanoscale 3:4275–4282

    Article  PubMed  CAS  Google Scholar 

  36. Aniagyei SE, Kennedy CJ, Stein B et al (2009) Synergistic effects of mutations and nanoparticle templating in the self-assembly of cowpea chlorotic mottle virus capsids. Nano Lett 9:393–398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Bancroft JB, Hiebert E, Bracker CE (1969) The effects of various polyanions on shell formation of some spherical viruses. Virology 39:924–930

    Article  PubMed  CAS  Google Scholar 

  38. Goicochea NL, De M, Rotello VM et al (2007) Core-like particles of an enveloped animal virus can self-assemble efficiently on artificial templates. Nano Lett 7:2281–2290

    Article  PubMed  CAS  Google Scholar 

  39. Goicochea NL, Datta SAK, Ayaluru M et al (2011) Structure and stoichiometry of template-directed recombinant HIV-1 Gag particles. J Mol Biol 410:667–680

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Hiebert E, Bancroft JB, Bracker CE (1968) The assembly in vitro of some small spherical viruses, hybrid viruses, and other nucleoproteins. Virology 34:492–508

    Article  PubMed  CAS  Google Scholar 

  41. Caspar D, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27:1–24

    Article  PubMed  CAS  Google Scholar 

  42. Lucas R, Larson S, McPherson A (2002) The crystallographic structure of brome mosaic virus. J Mol Biol 317:95–108

    Article  PubMed  CAS  Google Scholar 

  43. Cuillel M, Berthetcolominas C, Timmins PA et al (1987) Reassembly of Brome Mosaic-virus from dissociated virus - a neutron-scattering study. Eur Biophys J 15:169–176

    Article  CAS  Google Scholar 

  44. Lavelle L, Gingery M, Phillips M et al (2009) Phase diagram of self-assembled viral capsid protein polymorphs. J Phys Chem B 113:3813–3819

    Article  PubMed  CAS  Google Scholar 

  45. Bahadur RP, Rodier F, Janin J (2007) A dissection of the protein–protein interfaces in icosahedral virus capsids. J Mol Biol 367:574–590

    Article  PubMed  CAS  Google Scholar 

  46. Rao ALN (2006) Genome packaging by spherical plant RNA viruses. Annu Rev Phytopathol 44:61–87

    Article  PubMed  CAS  Google Scholar 

  47. Choi YG, Rao ALN (2003) Packaging of brome mosaic virus RNA3 is mediated through a bipartite signal. J Virol 77:9750–9757

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Ni P, Wang Z, Ma X et al (2012) An examination of the electrostatic interactions between the N-terminal tail of the brome mosaic virus coat protein and encapsidated RNAs. J Mol Biol 419:284–300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Sun J, DuFort C, Daniel M-C et al (2007) Core-controlled polymorphism in virus-like particles. Proc Natl Acad Sci 104:1354–1359

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Chen C, Kwak ES, Stein B et al (2005) Packaging of gold particles in viral capsids. J Nanosci Nanotechnol 5:2029–2033

    Article  PubMed  CAS  Google Scholar 

  51. Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Cheng RH, Kuhn RJ, Olson NH et al (1995) Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 80:621–630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Lopez S, Yao JS, Kuhn RJ et al (1994) Nucleocapsid-glycoprotein interactions required for assembly of alphaviruses. J Virol 68:1316–1323

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Goicochea NL (2010) Nanoparticle-directed assembly of enveloped virus components and applications. Ph.D. Thesis, Indiana University

    Google Scholar 

  55. Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18:203–217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Briggs JAG, Riches JD, Glass B et al (2009) Structure and assembly of immature HIV. Proc Natl Acad Sci 106:11090–11095

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Wright ER, Schooler JB, Ding HJ et al (2007) Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J 26:2218–2226

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Briggs JAG, Kräusslich H-G (2011) The molecular architecture of HIV. J Mol Biol 410:491–500

    Article  PubMed  CAS  Google Scholar 

  59. Datta SK, Rein A (2009) Preparation of recombinant HIV-1 Gag protein and assembly of virus-like particles in vitro. In: Prasad V, Kalpana G (eds) HIV protocols, vol 485. Humana Press, New York, pp 197–208

    Chapter  Google Scholar 

  60. Wilk T, Gross I, Gowen BE et al (2001) Organization of immature human immunodeficiency virus type 1. J Virol 75:759–771

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Slot JW, Geuze HJ (1985) A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol 38:87–93

    PubMed  CAS  Google Scholar 

  62. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  63. Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Gopinath K, Kao CC (2007) Replication-independent long-distance trafficking by viral RNAs in Nicotiana benthamiana. Plant Cell 19:1179–1191

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Cuillel M, Zulauf M, Jacrot B (1983) Self-assembly of brome mosaic virus protein into capsids: initial and final states of aggregation. J Mol Biol 164:589–603

    Article  PubMed  CAS  Google Scholar 

  66. Yamazaki H, Kaesberg P (1963) Degradation of bromegrass mosaic virus with calcium chloride and isolation of its protein and nucleic acid. J Mol Biol 7:760–762

    Article  PubMed  CAS  Google Scholar 

  67. Mukhopadhyay S, Chipman PR, Hong EM et al (2002) In vitro-assembled alphavirus core-like particles maintain a structure similar to that of nucleocapsid cores in mature virus. J Virol 76:11128–11132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Garmann RF, Comas-Garcia M, Gopal A et al (2014) The assembly pathway of an icosahedral single-stranded RNA virus depends on the strength of inter-subunit attractions. J Mol Biol 426:1050–1060

    Article  PubMed  CAS  Google Scholar 

  69. Datta SAK, Curtis JE, Ratcliff W et al (2007) Conformation of the HIV-1 Gag protein in solution. J Mol Biol 365:812–824

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Ludtke S, Baldwin P, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97

    Article  PubMed  CAS  Google Scholar 

  71. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  72. Chen S, Kimura K (1999) Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water. Langmuir 15:1075–1082

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0010507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan G. Dragnea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tsvetkova, I.B., Dragnea, B.G. (2015). Encapsulation of Nanoparticles in Virus Protein Shells. In: Orner, B. (eds) Protein Cages. Methods in Molecular Biology, vol 1252. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2131-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2131-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2130-0

  • Online ISBN: 978-1-4939-2131-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics