Skip to main content

Extracellular Matrix Components as a Substrate for Outgrowing Motoneurons

  • Protocol
  • First Online:
  • 1294 Accesses

Part of the book series: Neuromethods ((NM,volume 93))

Abstract

Embryonic motoneurons depend on extracellular matrix (ECM), and molecules within which are potent mediators of survival, axonal growth, and guidance, exhibiting either attractive or repellent functions. Therefore, isolated embryonic spinal cord motoneurons were cultured on a three-dimensional substrate composed of different ECM molecules produced by different glia cell lines. The motoneuron-matrix co-culture could be used to analyze the modifying effects of matrix components like chondroitin sulfate proteoglycans, bifunctional molecules with modifying properties either due to their protein backbone or the glycan portion subdividing their action into protein and the glycan parts.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Klausmeyer A, Conrad R, Faissner A et al (2011) Influence of glial-derived matrix molecules, especially chondroitin sulfates, on neurite growth and survival of cultured mouse embryonic motoneurons. J Neurosci Res 89:127–141

    Article  CAS  PubMed  Google Scholar 

  2. Hamburger V (1975) Cell death in the development of the lateral motor column of the chick embryo. J Comp Neurol 160:535–546

    Article  CAS  PubMed  Google Scholar 

  3. Dohrmann U, Edgar D, Sendtner M et al (1986) Muscle-derived factors that support survival and promote fiber outgrowth from embryonic chick spinal motoneurons in culture. Dev Biol 118:209–221

    Google Scholar 

  4. Wiese S, Metzger F, Holtmann B et al (1999) Mechanical and excitotoxic lesion of motoneurons: effects of neurotrophins and ciliary neurotrophic factor on survival and regeneration. Acta Neurochir Suppl 73:31–39

    CAS  PubMed  Google Scholar 

  5. Wiese S, Herrmann T, Drepper C et al (2010) Isolation and enrichment of embryonic mouse motoneurons from the lumbar spinal cord of individual mouse embryos. Nat Protoc 5:31–38

    Article  CAS  PubMed  Google Scholar 

  6. Rauch U (2004) Extracellular matrix components associated with remodeling processes in brain. Cell Mol Life Sci 61:2031–2045

    Article  CAS  PubMed  Google Scholar 

  7. Maleski M, Hockfield S (1997) Glial cells assemble hyaluronan-based pericellular matrices in vitro. Glia 20:193–202

    Article  CAS  PubMed  Google Scholar 

  8. Bosman FT, Stamenkovic I (2003) Functional structure and composition of the extracellular matrix. J Pathol 200:423–428

    Article  CAS  PubMed  Google Scholar 

  9. Huber AB, Kolodkin AL, Ginty DD et al (2003) Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 26:509–563

    Article  CAS  PubMed  Google Scholar 

  10. Kleene R, Schachner M (2004) Glycans and neural cell interactions. Nat Rev Neurosci 5:195–208

    Article  CAS  PubMed  Google Scholar 

  11. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    Article  CAS  PubMed  Google Scholar 

  12. Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    Article  CAS  PubMed  Google Scholar 

  13. Stoeckli ET, Landmesser LT (1998) Axon guidance at choice points. Curr Opin Neurobiol 8:73–79

    Article  CAS  PubMed  Google Scholar 

  14. Bonanomi D, Pfaff SL (2010) Motor axon pathfinding. Cold Spring Harb Perspect Biol 2:a001735

    Article  PubMed Central  PubMed  Google Scholar 

  15. Landmesser L, Dahm L, Tang JC et al (1990) Polysialic acid as a regulator of intramuscular nerve branching during embryonic development. Neuron 4:655–667

    Article  CAS  PubMed  Google Scholar 

  16. Fok-Seang J, Smith-Thomas LC, Meiners S et al (1995) An analysis of astrocytic cell lines with different abilities to promote axon growth. Brain Res 689:207–223

    Article  CAS  PubMed  Google Scholar 

  17. Fidler PS, Schuette K, Asher RA et al (1999) Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J Neurosci 19:8778–8788

    CAS  PubMed  Google Scholar 

  18. Watabe K, Fukuda T, Tanaka J et al (1995) Spontaneously immortalized adult mouse Schwann cells secrete autocrine and paracrine growth-promoting activities. J Neurosci Res 41:279–290

    Article  CAS  PubMed  Google Scholar 

  19. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  CAS  PubMed  Google Scholar 

  20. Stockdale FE (1992) Myogenic cell lineages. Dev Biol 154:284–298

    Article  CAS  PubMed  Google Scholar 

  21. Conrad R, Jablonka S, Sczepan T et al (2011) Lectin-based isolation and culture of mouse embryonic motoneurons. J Vis Exp 55:pii:3200

    Google Scholar 

  22. Smith-Thomas LC, Stevens J, Fok-Seang J et al (1995) Increased axon regeneration in astrocytes grown in the presence of proteoglycan synthesis inhibitors. J Cell Sci 108(Pt 3):1307–1315

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the JOVE journal for the kind permission regarding pictures and reproduction. This work was supported by the GRK 736 “Development and Plasticity of the Nervous System.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wiese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Conrad, R., Klausmeyer, A., Tsai, T., Faissner, A., Wiese, S. (2015). Extracellular Matrix Components as a Substrate for Outgrowing Motoneurons. In: Leach, J., Powell, E. (eds) Extracellular Matrix. Neuromethods, vol 93. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2083-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2083-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2082-2

  • Online ISBN: 978-1-4939-2083-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics