Skip to main content

Techniques for Examining the Effect of Substratum-Bound Proteoglycans on Neurite Outgrowth In Vitro

  • Protocol
  • First Online:
  • 1303 Accesses

Part of the book series: Neuromethods ((NM,volume 93))

Abstract

Techniques to investigate mechanisms affecting neurite outgrowth, in vitro, are invaluable to the neuroscience community. In particular, these techniques have enhanced our understanding of the role of the extracellular matrix (ECM) in neuronal regeneration following spinal cord injury (SCI). In this chapter, we explain two useful techniques that have been used in our laboratory to investigate the role of chondroitin sulfate proteoglycans (CSPGs) in the inhibition of neurite outgrowth: (1) the Stripe Assay (Snow et al., Exp Neurol 109(1):111–130, 1990), which is a widespread model used to determine the effect of a patterned substrata with a sharp gradient of bound CSPG on neurite outgrowth, and (2) the Step Gradient Assay (Snow and Letourneau, J Neurobiol 23(3):322–336, 1992), used to measure the response of neurites to a stepwise (less steep) increase in CSPGs. The Stripe Assay and Step Gradient Assay are considered to be “choice” assays, in which the sensorimotor, substratum-detecting portion of an elongating neurite, the growth cone, responds to changes in the ratio of growth-promoting to growth-inhibiting substratum-bound molecules. In addition to CSPGs, these methods can be used to test the responses of elongating neurites to a wide variety of extracellular matrix molecules or other proteins. Further, these assays can be used to study the ability of agents to overcome outgrowth inhibition. The results obtained from these methods can reveal mechanisms by which CSPGs or other molecules regulate axonal growth and regeneration, as well as help to identify novel therapeutic interventions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lamari FN, Karamanos NK (2006) Structure of chondroitin sulfate. Adv Pharmacol 53:33–48

    Article  CAS  PubMed  Google Scholar 

  2. Roughley PJ (2006) The structure and function of cartilage proteoglycans. Eur Cell Mater 12:92–101

    CAS  PubMed  Google Scholar 

  3. Snow DM, Lemmon V, Carrino DA, Caplan AI, Silver J (1990) Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp Neurol 109(1):111–130

    Article  CAS  PubMed  Google Scholar 

  4. Inatani M et al (2001) Inhibitory effects of neurocan and phosphacan on neurite outgrowth from retinal ganglion cells in culture. Invest Ophthalmol Vis Sci 42(8):1930–1938

    CAS  PubMed  Google Scholar 

  5. Hynds DL, Snow DM (1999) Neurite outgrowth inhibition by chondroitin sulfate proteoglycan: stalling/stopping exceeds turning in human neuroblastoma growth cones. Exp Neurol 160(1):244–255

    Article  CAS  PubMed  Google Scholar 

  6. Steindler DA (1993) Glial boundaries in the developing nervous system. Annu Rev Neurosci 16:445–470

    Article  CAS  PubMed  Google Scholar 

  7. Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV (2006) Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129(Pt 10):2761–2772

    Article  CAS  PubMed  Google Scholar 

  8. Beller JA, Gurkoff GG, Berman RF, Lyeth BG (2011) Pharmacological enhancement of glutamate transport reduces excitotoxicity in vitro. Restor Neurol Neurosci 29(5):331–346

    CAS  PubMed  Google Scholar 

  9. Faulkner JR et al (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24(9):2143–2155

    Article  CAS  PubMed  Google Scholar 

  10. Carulli D, Laabs T, Geller HM, Fawcett JW (2005) Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol 15(1):116–120

    Article  PubMed  Google Scholar 

  11. Hoke A, Silver J (1996) Proteoglycans and other repulsive molecules in glial boundaries during development and regeneration of the nervous system. Prog Brain Res 108:149–163

    Article  CAS  PubMed  Google Scholar 

  12. Galtrey CM, Fawcett JW (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 54(1):1–18

    Article  CAS  PubMed  Google Scholar 

  13. Davies SJ et al (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390(6661):680–683

    CAS  PubMed  Google Scholar 

  14. Kwok JC, Afshari F, Garcia-Alias G, Fawcett JW (2008) Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC. Restor Neurol Neurosci 26(2–3):131–145

    PubMed  Google Scholar 

  15. Heron PM, Sutton BM, Curinga GM, Smith GM, Snow DM (2007) Localized gene expression of axon guidance molecules in neuronal co-cultures. J Neurosci Methods 159(2):203–214

    Article  CAS  PubMed  Google Scholar 

  16. Barritt AW et al (2006) Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci 26(42):10856–10867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bradbury EJ et al (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416(6881):636–640

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Alias G et al (2011) Chondroitinase ABC combined with neurotrophin NT-3 secretion and NR2D expression promotes axonal plasticity and functional recovery in rats with lateral hemisection of the spinal cord. J Neurosci 31(49):17788–17799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Imagama S et al (2011) Keratan sulfate restricts neural plasticity after spinal cord injury. J Neurosci 31(47):17091–17102

    Article  CAS  PubMed  Google Scholar 

  20. Jefferson SC, Tester NJ, Howland DR (2011) Chondroitinase ABC promotes recovery of adaptive limb movements and enhances axonal growth caudal to a spinal hemisection. J Neurosci 31(15):5710–5720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Tauchi R et al (2012) The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury. J Neuroinflammation 9:53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yick LW, Cheung PT, So KF, Wu W (2003) Axonal regeneration of Clarke's neurons beyond the spinal cord injury scar after treatment with chondroitinase ABC. Exp Neurol 182(1):160–168

    Article  CAS  PubMed  Google Scholar 

  23. Tom VJ, Steinmetz MP, Miller JH, Doller CM, Silver J (2004) Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J Neurosci 24(29):6531–6539

    Article  CAS  PubMed  Google Scholar 

  24. Gilbert RJ et al (2005) CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension. Mol Cell Neurosci 29(4):545–558

    Article  CAS  PubMed  Google Scholar 

  25. Lagenaur C, Lemmon V (1987) An L1-like molecule, the 8D9 antigen, is a potent substrate for neurite extension. Proc Natl Acad Sci U S A 84(21):7753–7757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Snow DM et al (2009) Sensory neuron growth cone morphology serves as a biological read-out for subtle variations in chondroitin sulfate proteoglycan microstructure. J Neurotrauma 26:A-10

    Google Scholar 

  27. Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. 1951. Dev Dyn 195(4):231–272

    Article  CAS  PubMed  Google Scholar 

  28. Tashiro K et al (1991) The RGD containing site of the mouse laminin A chain is active for cell attachment, spreading, migration and neurite outgrowth. J Cell Physiol 146(3):451–459

    Article  CAS  PubMed  Google Scholar 

  29. Barbosa I et al (2003) Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology 13(9):647–653

    Article  CAS  PubMed  Google Scholar 

  30. van den Hoogen BM et al (1998) A microtiter plate assay for the determination of uronic acids. Anal Biochem 257(2):107–111

    Article  PubMed  Google Scholar 

  31. Miwa HE et al (2009) Conserved sequence in the aggrecan interglobular domain modulates cleavage by ADAMTS-4 and ADAMTS-5. Biochim Biophys Acta 1790(3):161–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Snow DM, Letourneau PC (1992) Neurite outgrowth on a step gradient of chondroitin sulfate proteoglycan (CS-PG). J Neurobiol 23(3):322–336

    Article  CAS  PubMed  Google Scholar 

  33. Snow DM, Mullins N, Hynds DL (2001) Nervous system-derived chondroitin sulfate proteoglycans regulate growth cone morphology and inhibit neurite outgrowth: a light, epifluorescence, and electron microscopy study. Microsc Res Tech 54(5):273–286

    Article  CAS  PubMed  Google Scholar 

  34. Beller JA et al (2013) Comparison of sensory neuron growth cone and filipodial responses to structurally diverse aggrecan variants, in vitro. Exp Neurol 247:143–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane M. Snow Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Beller, J.A., Hering, T.M., Snow, D.M. (2015). Techniques for Examining the Effect of Substratum-Bound Proteoglycans on Neurite Outgrowth In Vitro. In: Leach, J., Powell, E. (eds) Extracellular Matrix. Neuromethods, vol 93. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2083-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2083-9_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2082-2

  • Online ISBN: 978-1-4939-2083-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics