Skip to main content

Engineered Microdevices to Study and Manipulate Neural Stem Cell Chemotaxis

  • Protocol
  • First Online:
Book cover Extracellular Matrix

Part of the book series: Neuromethods ((NM,volume 93))

  • 1322 Accesses

Abstract

Traditional in vitro chemotaxis tools are typically limited by unstable concentration gradients, presence of hydrodynamic shear, and the inability to decouple cell migration directionality and speed. These limitations have restricted the reproducible and quantitative analysis of neuronal migration, which is a requirement for mechanism-based studies that may guide the development of new therapeutic strategies for neural regeneration. Here we describe a microfluidic setup for creating stable, linear, and shear-free gradients of putative chemotactic cues and their application in quantifying chemotaxis (i.e., migration directionality) and migration speed of human neural progenitor cells (NPCs). These devices can be coated with various extracellular matrix (ECM) proteins for the study of two-dimensional (2D) migration or filled with ECM hydrogels (e.g., collagen I or Matrigel) for the study of three-dimensional (3D) migration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andres RH et al (2011) The CCR2/CCL2 interaction mediates the transendothelial recruitment of intravascularly delivered neural stem cells to the ischemic brain. Stroke 42(10):2923–2931

    Article  PubMed Central  PubMed  Google Scholar 

  2. Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438

    Article  CAS  PubMed  Google Scholar 

  3. Imitola J et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101(52):18117–18122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Adler J (1966) Chemotaxis in bacteria. Science 153(3737):708–716

    Article  CAS  PubMed  Google Scholar 

  5. Hartmann TN et al (2008) A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells. J Leukoc Biol 84(4):1130–1140

    Article  CAS  PubMed  Google Scholar 

  6. Kokovay E et al (2010) Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell 7(2):163–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zigmond SH (1988) Orientation chamber in chemotaxis. Methods Enzymol 162:65–72

    Article  CAS  PubMed  Google Scholar 

  8. Zicha D, Dunn G, Jones G (1997) Analyzing chemotaxis using the Dunn direct-viewing chamber. Methods Mol Biol 75:449–457

    CAS  PubMed  Google Scholar 

  9. Keenan TM, Hsu C-H, Folch A (2006) Microfluidic ``jets'' for generating steady-state gradients of soluble molecules on open surfaces. Appl Phys Lett 89(11):114103

    Article  Google Scholar 

  10. Bhattacharjee N et al (2010) A neuron-benign microfluidic gradient generator for studying the response of mammalian neurons towards axon guidance factors. Integr Biol 2(11–12):669–679

    Article  CAS  Google Scholar 

  11. Chung BG, Lin F, Jeon NL (2006) A microfluidic multi-injector for gradient generation. Lab Chip 6(6):764–768

    Article  CAS  PubMed  Google Scholar 

  12. Dertinger SKW et al (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73(6):1240–1246

    Article  CAS  Google Scholar 

  13. Chung BG et al (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5(4):401–406

    Article  CAS  PubMed  Google Scholar 

  14. Jeon NL et al (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16(22):8311–8316

    Article  CAS  Google Scholar 

  15. Joanne Wang C et al (2008) A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues. Lab Chip 8(2):227–237

    Article  CAS  PubMed  Google Scholar 

  16. Urbich C et al (2002) Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arterioscler Thromb Vasc Biol 22(1):69–75

    Article  CAS  PubMed  Google Scholar 

  17. Wojciak-Stothard B, Ridley AJ (2003) Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J Cell Biol 161(2):429–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Walker GM et al (2005) Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5(6):611–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Saadi W et al (2007) Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed Microdevices 9(5):627–635

    Article  PubMed  Google Scholar 

  20. Breckenridge MT, Egelhoff TT, Baskaran H (2010) A microfluidic imaging chamber for the direct observation of chemotactic transmigration. Biomed Microdevices 12(3):543–553

    Article  PubMed Central  PubMed  Google Scholar 

  21. Irimia D et al (2007) Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7(12):1783–1790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Paliwal S et al (2007) MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature 446(7131):46–51

    Article  CAS  PubMed  Google Scholar 

  23. Xu H, Heilshorn SC (2012) Microfluidic investigation of BDNF-enhanced neural stem cell chemotaxis in CXCL12 gradients. Small 9(4):585–595

    Article  PubMed Central  PubMed  Google Scholar 

  24. Shamloo A et al (2008) Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8):1292–1299

    Article  CAS  PubMed  Google Scholar 

  25. Kuhnert F et al (2010) Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330(6006):985–989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Shamloo A, Xu H, Heilshorn S (2012) Mechanisms of vascular endothelial growth factor-induced pathfinding by endothelial sprouts in biomaterials. Tissue Eng Part A 18(3–4):320–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Haddox JL et al (1994) Characterization of chemical gradients in the collagen gel-visual chemotactic assay. J Immunol Methods 171(1):1–14

    Article  CAS  PubMed  Google Scholar 

  28. Cao X, Shoichet MS (2001) Defining the concentration gradient of nerve growth factor for guided neurite outgrowth. Neuroscience 103(3):831–840

    Article  CAS  PubMed  Google Scholar 

  29. Wong AP et al (2008) Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments. Biomaterials 29(12):1853–1861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Cheng S-Y et al (2007) A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7(6):763–769

    Article  CAS  PubMed  Google Scholar 

  31. Wu H, Huang B, Zare RN (2006) Generation of complex, static solution gradients in microfluidic channels. J Am Chem Soc 128(13):4194–4195

    Article  CAS  PubMed  Google Scholar 

  32. Abhyankar VV et al (2006) Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6(3):389–393

    Article  CAS  PubMed  Google Scholar 

  33. Diao J et al (2006) A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab Chip 6(3):381–388

    Article  CAS  PubMed  Google Scholar 

  34. Millet LJ et al (2010) Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab Chip 10(12):1525–1535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

Work was supported by NIH 1T32-HL098049-01A1 to the Stanford Cardiovascular Institute (H.X.), NIH R21-AR062359-01, and 1DP2-OD006477-01 (S.C.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah C. Heilshorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Xu, H., Heilshorn, S.C. (2015). Engineered Microdevices to Study and Manipulate Neural Stem Cell Chemotaxis. In: Leach, J., Powell, E. (eds) Extracellular Matrix. Neuromethods, vol 93. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2083-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2083-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2082-2

  • Online ISBN: 978-1-4939-2083-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics