Skip to main content

The Physical Basis of Total Internal Reflection Fluorescence (TIRF) Microscopy and Its Cellular Applications

  • Protocol
  • First Online:
Book cover Advanced Fluorescence Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1251))

Abstract

Total internal reflection fluorescence (TIRF) microscopy has gained popularity in recent years among cell biologists due to its ability to clearly visualize events that occur at the adherent plasma membrane of cells. TIRF microscopy systems are now commercially available from nearly all microscope suppliers. This review aims to give the reader an introduction to the physical basis of TIRF and considerations that need to be made when purchasing a commercial system. We explain how TIRF can be combined with other microscopy modalities and describe how to use TIRF to study processes such as endocytosis, exocytosis, and focal adhesion dynamics. Finally, we provide a step-by-step guide to imaging and analyzing focal adhesion dynamics in a migrating cell using TIRF microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123:3621–3628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774

    Article  CAS  PubMed  Google Scholar 

  3. Axelrod D (2008) Total internal reflection fluorescence microscopy. Methods Cell Biol 89:169–221

    Article  CAS  PubMed  Google Scholar 

  4. Rappoport JZ, Simon SM (2003) Real-time analysis of clathrin-mediated endocytosis during cell migration. J Cell Sci 116:847–855

    Article  CAS  PubMed  Google Scholar 

  5. Rappoport JZ, Benmerah A, Simon SM (2005) Analysis of the AP-2 adaptor complex and cargo during clathrin-mediated endocytosis. Traffic 6:539–547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Merrifield CJ, Perrais D, Zenisek D (2005) Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121:593–606

    Article  CAS  PubMed  Google Scholar 

  7. Merrifield CJ, Feldman ME, Wan L et al (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4:691–698

    Article  CAS  PubMed  Google Scholar 

  8. Fix M, Melia TJ, Jaiswal JK et al (2004) Imaging single membrane fusion events mediated by SNARE proteins. Proc Natl Acad Sci U S A 101:7311–7316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Akopova I, Tatur S, Grygorczyk M et al (2011) Imaging exocytosis of ATP-containing vesicles with TIRF microscopy in lung epithelial A549 cells. Purinerg Signal 8:59–70

    Article  Google Scholar 

  10. Grigoriev I, Splinter D, Keijzer N et al (2007) Rab6 regulates transport and targeting of exocytotic carriers. Dev Cell 13:305–314

    Article  CAS  PubMed  Google Scholar 

  11. Berginski ME, Vitriol EA, Hahn KM et al (2011) High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLoS One 6:e22025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Partridge MA, Marcantonio EE (2006) Initiation of attachment and generation of mature focal adhesions by integrin-containing filopodia in cell spreading. Mol Biol Cell 17:4237–4248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fletcher SJ, Poulter NS, Haining EJ et al (2011) Clathrin‐mediated endocytosis regulates occludin, and not focal adhesion, distribution during epithelial wound healing. Biol Cell 104:238–256

    Article  Google Scholar 

  14. Lock FE, Ryan KR, Poulter NS et al (2012) Differential regulation of adhesion complex turnover by ROCK1 and ROCK2. PLoS One 7:e31423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Manneville JB (2006) Use of TIRF microscopy to visualize actin and microtubules in migrating cells. Meth Enzymol 406:520–532

    Article  CAS  PubMed  Google Scholar 

  16. Webb RL, Rozov O, Watkins SC et al (2009) Using total internal reflection fluorescence (TIRF) microscopy to visualize cortical actin and microtubules in the drosophila syncytial embryo. Dev Dynam 238:2622–2632

    Article  CAS  Google Scholar 

  17. Dixit R, Ross JL (2010) Studying plus-end tracking at single molecule resolution using TIRF microscopy. Method Cell Biol 95:543–554

    Article  CAS  Google Scholar 

  18. Gardner MK, Charlebois BD, Jánosi IM et al (2011) Rapid microtubule self-assembly kinetics. Cell 146:582–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Graham-Smith SF, King TA (2000) Optics and photonics: an introduction. Wiley, Chichester, UK

    Google Scholar 

  20. Millis BA (2012) Evanescent-wave field imaging: an introduction to total internal reflection fluorescence microscopy. Methods Mol Biol 823:295–309

    Article  CAS  PubMed  Google Scholar 

  21. Rappoport JZ, Simon SM (2009) Endocytic trafficking of activated EGFR is AP-2 dependent and occurs through preformed clathrin spots. J Cell Sci 122:1301–1305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Born M, Wolf E, Bhatia AB (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge Univ Press, Cambridge, UK

    Book  Google Scholar 

  23. Anantharam A, Onoa B, Edwards RH et al (2010) Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM. J Cell Biol 188:415–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sund SE, Swanson JA, Axelrod D (1999) Cell membrane orientation visualized by polarized total internal reflection fluorescence. Biophys J 77:2266–2283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89:141–145

    Article  CAS  PubMed  Google Scholar 

  26. Stock K, Sailer R, Strauss W et al (2003) Variable‐angle total internal reflection fluorescence microscopy (VA‐TIRFM): realization and application of a compact illumination device. J Microsc 211:19–29

    Article  CAS  PubMed  Google Scholar 

  27. Fish KN (2009) Total internal reflection fluorescence (TIRF) microscopy. Curr Protoc Cytom Chapter 12, Unit 12.18

    Google Scholar 

  28. Olveczky BP, Periasamy N, Verkman A (1997) Mapping fluorophore distributions in three dimensions by quantitative multiple angle-total internal reflection fluorescence microscopy. Biophys J 73:2836–2847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Oheim M, Loerke D, Chow RH et al (1999) Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release. Philos T Roy Soc B 354:307–318

    Article  CAS  Google Scholar 

  30. Rohrbach A (2000) Observing secretory granules with a multiangle evanescent wave microscope. Biophys J 78:2641–2654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Loerke D, Stühmer W, Oheim M (2002) Quantifying axial secretory-granule motion with variable-angle evanescent-field excitation. J Neurosci Methods 119:65–73

    Article  PubMed  Google Scholar 

  32. Weisswange I, Bretschneider T, Anderson KI (2005) The leading edge is a lipid diffusion barrier. J Cell Sci 118:4375–4380

    Article  CAS  PubMed  Google Scholar 

  33. Millán J, Hewlett L, Glyn M et al (2006) Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola-and F-actin-rich domains. Nat Cell Biol 8:113–123

    Article  PubMed  Google Scholar 

  34. Saffarian S, Kirchhausen T (2008) Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane. Biophys J 94:2333–2342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Pitkeathly WT, Poulter NS, Claridge E et al (2011) Auto-align – multi-modality fluorescence microscopy image co-registration. Traffic 13:204–217

    Article  PubMed  Google Scholar 

  36. Mattheyses AL, Axelrod D (2006) Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence. J Biomed Opt 11:014006

    Article  PubMed  Google Scholar 

  37. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    Article  CAS  PubMed  Google Scholar 

  38. Damke H (1996) Dynamin and receptor-mediated endocytosis. FEBS Lett 389:48–51

    Article  CAS  PubMed  Google Scholar 

  39. Roth MG (2005) Clathrin-mediated endocytosis before fluorescent proteins. Nat Rev Mol Cell Biol 7:63–68

    Article  Google Scholar 

  40. Gaidarov I, Santini F, Warren RA et al (1999) Spatial control of coated-pit dynamics in living cells. Nat Cell Biol 1:1–7

    Article  CAS  PubMed  Google Scholar 

  41. Cao H, Garcia F, McNiven MA (1998) Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 9:2595–2609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Rappoport JZ, Taha BW, Lemeer S et al (2003) The AP-2 complex is excluded from the dynamic population of plasma membrane-associated clathrin. J Biol Chem 278:47357–47360

    Article  CAS  PubMed  Google Scholar 

  43. Yarar D, Waterman-Storer CM, Schmid SL (2005) A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol Biol Cell 16:964–975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Rappoport JZ (2008) Focusing on clathrin-mediated endocytosis. Biochem J 412:415–423

    Article  CAS  PubMed  Google Scholar 

  45. Soulet F, Yarar D, Leonard M et al (2005) SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis. Mol Biol Cell 16:2058–2067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lee D, Wu X, Eisenberg E et al (2006) Recruitment dynamics of GAK and auxilin to clathrin-coated pits during endocytosis. J Cell Sci 119:3502–3512

    Article  CAS  PubMed  Google Scholar 

  47. Jahn R, Südhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911

    Article  CAS  PubMed  Google Scholar 

  48. Simon SM (2009) Partial internal reflections on total internal reflection fluorescent microscopy. Trends Cell Biol 19:661–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Jaiswal JK, Fix M, Takano T et al (2007) Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. Proc Natl Acad Sci U S A 104:14151–14156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Schmoranzer J, Goulian M, Axelrod D et al (2000) Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J Cell Biol 149:23–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Burridge K, Fath K, Kelly T et al (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 4:487–525

    Article  CAS  PubMed  Google Scholar 

  52. Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12:463–519

    Article  CAS  PubMed  Google Scholar 

  53. Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, disassembly and turnover in migrating cells-over and over and over again. Nat Cell Biol 4:E97–E100

    Article  CAS  PubMed  Google Scholar 

  54. Ezratty EJ, Bertaux C, Marcantonio EE et al (2009) Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J Cell Biol 187:733–747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding through BBSRC Project grant BB/H002308/1. WTEP and PJS are funded through the Physical Sciences of Imaging for the Biomedical Sciences (PSIBS) Doctoral Training Centre, and NSP is funded through British Heart Foundation New Horizons grant NH/11/6/29061. The TIRF microscope used in this research was obtained through Birmingham Science City Translational Medicine Clinical Research and Infrastructure Trials Platform, with support from Advantage West Midlands (AWM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Z. Rappoport .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Poulter, N.S., Pitkeathly, W.T.E., Smith, P.J., Rappoport, J.Z. (2015). The Physical Basis of Total Internal Reflection Fluorescence (TIRF) Microscopy and Its Cellular Applications. In: Verveer, P. (eds) Advanced Fluorescence Microscopy. Methods in Molecular Biology, vol 1251. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2080-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2080-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2079-2

  • Online ISBN: 978-1-4939-2080-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics