Skip to main content

Peptide and Peptide Library Cyclization via Bromomethylbenzene Derivatives

  • Protocol
  • First Online:
Peptide Libraries

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1248))

Abstract

Cyclization confers several advantages to peptides, cumulatively serving to make them more drug-like. In this protocol, cyclic peptides are generated via bis-alkylation of cysteine-containing peptides using α,α′-dibromo-m-xylene. The reactions are robust and high yielding. Multiple reaction platforms for the application of this versatile strategy are described herein: the cyclization of solid-phase-synthesized peptides, both in solution and on resin, as well as the cyclization of in vitro translated mRNA-peptide fusion libraries on oligo(dT) resin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pomilio AB, Battista ME, Vitale AA (2006) Naturally-occurring cyclopeptides: structures and bioactivity. Curr Org Chem 10:2075–2121. doi:10.2174/138527206778742669

    Article  CAS  Google Scholar 

  2. Millward SW, Takahashi TT, Roberts RW (2005) A general route for post-translational cyclization of mRNA display libraries. J Am Chem Soc 127:14142–14143. doi:10.1021/ja054373h

    Article  CAS  PubMed  Google Scholar 

  3. Gudmundsson OS, Pauletti GM, Wang W, Shan DX, Zhang HJ, Wang BH, Borchardt RT (1999) Coumarinic acid-based cyclic prodrugs of opioid peptides that exhibit metabolic stability to peptidases and excellent cellular permeability. Pharm Res 16:7–15. doi:10.1023/A:1018828207920

    Article  CAS  PubMed  Google Scholar 

  4. Piserchio A, Salinas GD, Li T, Marshall J, Spaller MR, Mierke DF (2004) Targeting specific PDZ domains of PSD-95: structural basis for enhanced affinity and enzymatic stability of a cyclic peptide. Chem Biol 11:469–473. doi:10.1016/j.chembiol.2004.03.013

    Article  CAS  PubMed  Google Scholar 

  5. Kwon Y, Kodadek T (2007) Quantitative comparison of the relative cell permeability of cyclic and linear peptides. Chem Biol 14:671–677. doi:10.1016/j.chembiol.2007.05.006

    Article  CAS  PubMed  Google Scholar 

  6. Rezai T, Yu B, Millhauser GL, Jacobson MP, Lokey RS (2006) Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J Am Chem Soc 128:2510–2511. doi:10.1021/ja0563455

    Article  CAS  PubMed  Google Scholar 

  7. Dimaio J, Nguyen TMD, Lemieux C, Schiller PW (1982) Synthesis and pharmacological characterization in vitro of cyclic enkephalin analogs—effect of conformational constraints on opiate receptor selectivity. J Med Chem 25:1432–1438. doi:10.1021/jm00354a008

    Article  CAS  PubMed  Google Scholar 

  8. Khan AR, Parrish JC, Fraser ME, Smith WW, Bartlett PA, James MNG (1998) Lowering the entropic barrier for binding conformationally flexible inhibitors to enzymes. Biochemistry 37:16839–16845. doi:10.1021/bi9821364

    Article  CAS  PubMed  Google Scholar 

  9. Raffler NA, Schneider-Mergener J, Famulok M (2003) A novel class of small functional peptides that bind and inhibit human α-thrombin isolated by mRNA display. Chem Biol 10:69–79. doi:10.1016/S1074-5521(02)00309-5

    Article  CAS  PubMed  Google Scholar 

  10. Guillen Schlippe YV, Hartman MCT, Josephson K, Szostak JW (2012) In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. J Am Chem Soc 134:10469–10477. doi:10.1021/ja301017y

    Article  CAS  PubMed Central  Google Scholar 

  11. Timmerman P, Beld J, Puijk WC, Meloen RH (2005) Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces. Chembiochem 6:821–824. doi:10.1002/cbic.200400374

    Article  CAS  PubMed  Google Scholar 

  12. Heinis C, Rutherford T, Freund S, Winter G (2009) Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat Chem Biol 5:502–507. doi:10.1038/nchembio.184

    Article  CAS  PubMed  Google Scholar 

  13. Timmerman P, Puijk WC, Meloen RH (2007) Functional reconstruction and synthetic mimicry of a conformational epitope using CLIPS™ technology. J Mol Recognit 20:283–299. doi:10.1002/jmr.846

    Article  CAS  PubMed  Google Scholar 

  14. Dewkar GK, Carneiro PB, Hartman MC (2009) Synthesis of novel peptide linkers: simultaneous cyclization and labeling. Org Lett 11:4708–4711. doi:10.1021/ol901662cc

    Article  CAS  PubMed  Google Scholar 

  15. Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94:12297–12302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755

    Article  CAS  PubMed  Google Scholar 

  17. Ma Z, Hartman MT (2012) In vitro selection of unnatural cyclic peptide libraries via mRNA display. J Am Chem Soc 805:367–390. doi:10.1007/978-1-61779-379-0_21

    CAS  Google Scholar 

  18. Takahashi TT, Roberts RW (2009) In vitro selection of protein and peptide libraries using mRNA display. Methods Mol Biol 535:293–314. doi:10.1007/978-1-59745-557-2_17

    Article  CAS  PubMed  Google Scholar 

  19. Teixeira A, Benckhuijsen WE, de Koning PE, Valentijn ARPM, Drijfhout JW (2002) The use of Dodt as a non-malodorous scavenger in Fmoc-based peptide synthesis. Protein Pept Lett 9:379–385. doi:10.2174/0929866023408481

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Concern Foundation and the NIH (1R01CA166264).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. T. Hartman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hacker, D.E., Almohaini, M., Anbazhagan, A., Ma, Z., Hartman, M.C.T. (2015). Peptide and Peptide Library Cyclization via Bromomethylbenzene Derivatives. In: Derda, R. (eds) Peptide Libraries. Methods in Molecular Biology, vol 1248. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2020-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2020-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2019-8

  • Online ISBN: 978-1-4939-2020-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics