Skip to main content

Maleimide-Based Method for Elaboration of Cysteine-Containing Peptide Phage Libraries

  • Protocol
  • First Online:
Peptide Libraries

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1248))

Abstract

Peptide-based molecules are known to have therapeutic utility, but the generation of phage-focused libraries to optimize peptide properties and functionality is challenging. Genetic approaches are limited to peptide extension on the peptide termini. Current chemical methods are technically challenging and time-consuming. A new chemical method is developed to extend a maleimide-conjugated peptide with a cysteine-containing random peptide phage display library. As a proof of concept, a 15-mer epidermal growth factor receptor (EGFR)-binding peptide was synthesized with a maleimide group at its C-terminus and then conjugated to the cysteine-containing library. After panning and screening, several extended peptides were discovered and tested to have a higher affinity to EGFR. This strategy can have broad utility to optimize pharmacophores of any modalities (peptides, unnatural peptides, drug conjugates) capable of bearing a maleimide group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Molek P, Strukelj B, Bratkovic T (2011) Peptide phage display as a tool for drug discovery: targeting membrane receptors. Molecules 16:857–887

    Article  CAS  PubMed  Google Scholar 

  2. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  3. Sidhu SS (2001) Engineering M13 for phage display. Biomol Eng 18:57–63

    Article  CAS  PubMed  Google Scholar 

  4. Fairbrother WJ, Christinger HW, Cochran AG, Fuh G, Keenan CJ, Quan C, Shriver SK, Tom JY, Wells JA, Cunningham BC (1998) Novel peptides selected to bind vascular endothelial growth factor target the receptor-binding site. Biochemistry 37:17754–17764

    Article  CAS  PubMed  Google Scholar 

  5. Bower KE, Lam SN, Oates BD, Del Rosario JR, Corner E, Osothprarop TF, Kinhikar AG, Hoye JA, Preston RR, Murphy RE, Campbell LA, Huang H, Jimenez J, Cao X, Chen G, Ainekulu ZW, Datt AB, Levin NJ, Doppalapudi VR, Pirie-Shepherd SR, Bradshaw C, Woodnutt G, Lappe RW (2011) Evolution of potent and stable placental-growth-factor-1-targeting CovX-bodies from phage display peptide discovery. J Med Chem 54:1256–1265

    Article  CAS  PubMed  Google Scholar 

  6. Frankel A, Li S, Starck SR, Roberts RW (2003) Unnatural RNA display libraries. Curr Opin Struct Biol 13:506–512

    Article  CAS  PubMed  Google Scholar 

  7. Tian F, Tsao ML, Schultz PG (2004) A phage display system with unnatural amino acids. J Am Chem Soc 126:15962–15963

    Article  CAS  PubMed  Google Scholar 

  8. Heinis C, Rutherford T, Freund S, Winter G (2009) Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat Chem Biol 5:502–507

    Article  CAS  PubMed  Google Scholar 

  9. Goodman M, Zapf C, Rew Y (2001) New reagents, reactions, and peptidomimetics for drug design. Biopolymers 60:229–245

    Article  CAS  PubMed  Google Scholar 

  10. Maun HR, Eigenbrot C, Lazarus RA (2003) Engineering exosite peptides for complete inhibition of factor VIIa using a protease switch with substrate phage. J Biol Chem 278:21823–21830

    Article  CAS  PubMed  Google Scholar 

  11. McCarter JD, Stephens D, Shoemaker K, Rosenberg S, Kirsch JF, Georgiou G (2004) Substrate specificity of the Escherichia coli outer membrane protease OmpT. J Bacteriol 186:5919–5925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Dwyer MA, Lu W, Dwyer JJ, Kossiakoff AA (2000) Biosynthetic phage display: a novel protein engineering tool combining chemical and genetic diversity. Chem Biol 7:263–274

    Article  CAS  PubMed  Google Scholar 

  13. Carrico ZM, Farkas ME, Zhou Y, Hsiao SC, Marks JD, Chokhawala H, Clark DS, Francis MB (2012) N-terminal labeling of filamentous phage to create cancer marker imaging agents. ACS Nano 6(8):6675–6680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Woiwode TF, Haggerty JE, Katz R, Gallop MA, Barrett RW, Dower WJ, Cwirla SE (2003) Synthetic compound libraries displayed on the surface of encoded bacteriophage. Chem Biol 10:847–858

    Article  CAS  PubMed  Google Scholar 

  15. Li K, Chen Y, Li S, Nguyen HG, Niu Z, You S, Mello CM, Lu X, Wang Q (2010) Chemical modification of M13 bacteriophage and its application in cancer cell imaging. Bioconjug Chem 21:1369–1377

    Article  CAS  PubMed  Google Scholar 

  16. Stephanopoulos N, Francis MB (2011) Choosing an effective protein bioconjugation strategy. Nat Chem Biol 7:876–884

    Article  CAS  PubMed  Google Scholar 

  17. Ng S, Jafari MR, Matochko WL, Derda R (2012) Quantitative synthesis of genetically encoded glycopeptide libraries displayed on M13 phage. ACS Chem Biol 7:1482–1487

    Article  CAS  PubMed  Google Scholar 

  18. Hess GT, Cragnolini JJ, Popp MW, Allen MA, Dougan SK, Spooner E, Ploegh HL, Belcher AM, Guimaraes CP (2012) M13 bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins. Bioconjug Chem 23:1478–1487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Santoso B, Lam S, Murray BW, Chen G (2013) A simple and efficient maleimide-based approach for peptide extension with a cysteine-containing peptide phage library. Bioorg Med Chem Lett 23:5680–5683

    Article  CAS  PubMed  Google Scholar 

  20. Li HX, Hwang BY, Laxmikanthan G, Blaber SI, Blaber M, Golubkov PA, Ren P, Iverson BL, Georgiou G (2008) Substrate specificity of human kallikreins 1 and 6 determined by phage display. Protein Sci 17:664–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fellouse FA, Pal G (2005) Chapter 3. Methods for the construction of phage-displayed libraries. In: Sidhu SS (ed) Phage display in biotechnology and drug discovery. CRC Press, Boca Raton, FL, pp 111–142

    Google Scholar 

  22. Li S, Roberts RW (2003) A novel strategy for in vitro selection of peptide-drug conjugates. Chem Biol 10:233–239

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Pfizer Postdoctoral Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brion W. Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Santoso, B., Murray, B.W. (2015). Maleimide-Based Method for Elaboration of Cysteine-Containing Peptide Phage Libraries. In: Derda, R. (eds) Peptide Libraries. Methods in Molecular Biology, vol 1248. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2020-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2020-4_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2019-8

  • Online ISBN: 978-1-4939-2020-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics