Skip to main content

A Quantitative and High-Throughput Assay of Human Papillomavirus DNA Replication

  • Protocol
  • First Online:
Cervical Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1249))

Abstract

Replication of the human papillomavirus (HPV) double-stranded DNA genome is accomplished by the two viral proteins E1 and E2 in concert with host DNA replication factors. HPV DNA replication is an established model of eukaryotic DNA replication and a potential target for antiviral therapy. Assays to measure the transient replication of HPV DNA in transfected cells have been developed, which rely on a plasmid carrying the viral origin of DNA replication (ori) together with expression vectors for E1 and E2. Replication of the ori-plasmid is typically measured by Southern blotting or PCR analysis of newly replicated DNA (i.e., DpnI digested DNA) several days post-transfection. Although extremely valuable, these assays have been difficult to perform in a high-throughput and quantitative manner. Here, we describe a modified version of the transient DNA replication assay that circumvents these limitations by incorporating a firefly luciferase expression cassette in cis of the ori. Replication of this ori-plasmid by E1 and E2 results in increased levels of firefly luciferase activity that can be accurately quantified and normalized to those of Renilla luciferase expressed from a control plasmid, thus obviating the need for DNA extraction, digestion, and analysis. We provide a detailed protocol for performing the HPV type 31 DNA replication assay in a 96-well plate format suitable for small-molecule screening and EC50 determinations. The quantitative and high-throughput nature of the assay should greatly facilitate the study of HPV DNA replication and the identification of inhibitors thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebner CM, Laimins LA (2006) Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol 16:83–97

    Article  PubMed  CAS  Google Scholar 

  2. Clertant P, Seif I (1984) A common function for polyoma virus large-T and papillomavirus E1 proteins? Nature 311:276–279

    Article  PubMed  CAS  Google Scholar 

  3. Mansky KC, Batiza A, Lambert PF (1997) Bovine papillomavirus type 1 E1 and simian virus 40 large T antigen share regions of sequence similarity required for multiple functions. J Virol 71:7600–7608

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Li D, Zhao R, Lilyestrom W, Gai D, Zhang R, DeCaprio JA, Fanning E, Jochimiak A, Szakonyi G, Chen XS (2003) Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature 423:512–518

    Article  PubMed  CAS  Google Scholar 

  5. Titolo S, Pelletier A, Pulichino AM, Brault K, Wardrop E, White PW, Cordingley MG, Archambault J (2000) Identification of domains of the human papillomavirus type 11 E1 helicase involved in oligomerization and binding to the viral origin. J Virol 74:7349–7361

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. White PW, Pelletier A, Brault K, Titolo S, Welchner E, Thauvette L, Fazekas M, Cordingley MG, Archambault J (2001) Characterization of recombinant HPV6 and 11 E1 helicases: effect of ATP on the interaction of E1 with E2 and mapping of a minimal helicase domain. J Biol Chem 276:22426–22438

    Article  PubMed  CAS  Google Scholar 

  7. Amin AA, Titolo S, Pelletier A, Fink D, Cordingley MG, Archambault J (2000) Identification of domains of the HPV11 E1 protein required for DNA replication in vitro. Virology 272:137–150

    Article  PubMed  CAS  Google Scholar 

  8. Conger KL, Liu JS, Kuo SR, Chow LT, Wang TS (1999) Human papillomavirus DNA replication. Interactions between the viral E1 protein and two subunits of human dna polymerase alpha/primase. J Biol Chem 274:2696–2705

    Article  PubMed  CAS  Google Scholar 

  9. Swindle CS, Zou N, Van Tine BA, Shaw GM, Engler JA, Chow LT (1999) Human papillomavirus DNA replication compartments in a transient DNA replication system. J Virol 73:1001–1009

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Clower RV, Hu Y, Melendy T (2006) Papillomavirus E2 protein interacts with and stimulates human topoisomerase I. Virology 348:13–18

    Article  PubMed  CAS  Google Scholar 

  11. Clower RV, Fisk JC, Melendy T (2006) Papillomavirus E1 protein binds to and stimulates human topoisomerase I. J Virol 80:1584–1587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Del Vecchio AM, Romanczuk H, Howley PM, Baker CC (1992) Transient replication of human papillomavirus DNAs. J Virol 66:5949–5958

    PubMed  PubMed Central  Google Scholar 

  13. Taylor ER, Morgan IM (2003) A novel technique with enhanced detection and quantitation of HPV-16 E1- and E2-mediated DNA replication. Virology 315:103–109

    Article  PubMed  CAS  Google Scholar 

  14. Fradet-Turcotte A, Morin G, Lehoux M, Bullock PA, Archambault J (2010) Development of quantitative and high-throughput assays of polyomavirus and papillomavirus DNA replication. Virology 399:65–76

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Fradet-Turcotte A, Bergeron-Labrecque F, Moody CA, Lehoux M, Laimins LA, Archambault J (2011) Nuclear accumulation of the papillomavirus E1 helicase blocks S-phase progression and triggers an ATM-dependent DNA damage response. J Virol 85:8996–9012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Morin G, Fradet-Turcotte A, Di Lello P, Bergeron-Labrecque F, Omichinski JG, Archambault J (2011) A conserved amphipathic helix in the N-terminal regulatory region of the papillomavirus E1 helicase is required for efficient viral DNA replication. J Virol 85:5287–5300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Lehoux M, Fradet-Turcotte A, Lussier-Price M, Omichinski JG, Archambault J (2012) Inhibition of human papillomavirus DNA replication by an E1-derived p80/UAF1-binding peptide. J Virol 86:3486–3500

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Development of this assay was supported by grants from the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Archambault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gagnon, D., Fradet-Turcotte, A., Archambault, J. (2015). A Quantitative and High-Throughput Assay of Human Papillomavirus DNA Replication. In: Keppler, D., Lin, A. (eds) Cervical Cancer. Methods in Molecular Biology, vol 1249. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2013-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2013-6_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2012-9

  • Online ISBN: 978-1-4939-2013-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics