Skip to main content

Single-Nucleotide Polymorphism Discrimination Using High-Resolution Melting Analysis for the Genotyping of Bacillus anthracis

  • Protocol
  • First Online:
Book cover Veterinary Infection Biology: Molecular Diagnostics and High-Throughput Strategies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1247))

Abstract

High-resolution melting (HRM) is a post-PCR technique that determines with high precision the melt profile of PCR products using a new generation of double-stranded DNA-binding dyes and accurate fluorescence data acquisition over small temperature increments. The method can be used to interrogate small sets of single-nucleotide polymorphisms (SNPs). Here, we describe a simple and cost-effective HRM-based method for the screening of 14 phylogenetically informative SNPs within the genome of Bacillus anthracis that subtype the species into 13 major sublineages or subgroups. Fourteen monoplex and seven duplex SNP-discrimination assays have been designed. We detail the parameters most important for the successful application of HRM for B. anthracis genotyping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turnbull PC (2002) Anthrax history, disease and ecology. In: Koehler TM (ed) Anthrax, vol 271, Springer-Verlag. Berlin, Germany, pp 1–19

    Chapter  Google Scholar 

  2. Hugh-Jones M (1999) 1996-97 Global Anthrax Report. J Appl Microbiol 87:189–191

    Article  CAS  PubMed  Google Scholar 

  3. Fasanella A, Galante D, Garofolo G et al (2010) Anthrax undervalued zoonosis. Vet Microbiol 140:318–331

    Article  PubMed  Google Scholar 

  4. Derzelle S, Thierry S (2013) Genetic Diversity of Bacillus anthracis in Europe: Genotyping Methods in Forensic and Epidemiologic Investigations. Biosecur Bioterror 11:S166–S176

    Article  PubMed  Google Scholar 

  5. Keim P, Gruendike JM, Klevytska AM et al (2009) The genome and variation of Bacillus anthracis. Mol Aspects Med 30:397–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Keim P, Price LB, Klevytska AM et al (2000) Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J Bacteriol 182:2928–2936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Pearson T, Busch JD, Ravel J et al (2004) Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc Natl Acad Sci U S A 101:13536–13541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Van Ert MN, Easterday WR, Huynh LY et al (2007) Global genetic population structure of Bacillus anthracis. PLoS One 2:e461

    Article  PubMed Central  PubMed  Google Scholar 

  9. Marston CK, Allen CA, Beaudry J et al (2011) Molecular epidemiology of anthrax cases associated with recreational use of animal hides and yarn in the United States. PLoS One 6:e28274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Erali M, Voelkerding KV, Wittwer CT (2008) High resolution melting applications for clinical laboratory medicine. Exp Mol Pathol 85:50–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hurtle W, Bode E, Kulesh DA et al (2004) Detection of the Bacillus anthracis gyrA gene by using a minor groove binder probe. J Clin Microbiol 42:179–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Easterday WR, Van Ert MN, Simonson TS et al (2005) Use of single nucleotide polymorphisms in the plcR gene for specific identification of Bacillus anthracis. J Clin Microbiol 43:1995–1997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Satterfield BC, Kulesh DA, Norwood DA et al (2007) Tentacle Probes: differentiation of difficult single-nucleotide polymorphisms and deletions by presence or absence of a signal in real-time PCR. Clin Chem 53: 2042–2050

    Article  CAS  PubMed  Google Scholar 

  14. Easterday WR, Van Ert MN, Zanecki S et al (2005) Specific detection of Bacillus anthracis using a TaqMan mismatch amplification mutation assay. Biotechniques 38:731–735

    Article  CAS  PubMed  Google Scholar 

  15. Birdsell DN, Pearson T, Price EP et al (2012) Melt analysis of mismatch amplification mutation assays (Melt-MAMA): a functional study of a cost-effective SNP genotyping assay in bacterial models. PLoS One 7:e32866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Price EP, Matthews MA, Beaudry JA et al (2010) Cost-effective interrogation of single nucleotide polymorphisms using the mismatch amplification mutation assay and capillary electrophoresis. Electrophoresis 31:3881–3888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Krypuy M, Newnham GM, Thomas DM et al (2006) High resolution melting analysis for the rapid and sensitive detection of mutations in clinical samples: KRAS codon 12 and 13 mutations in non-small cell lung cancer. BMC Cancer 6:295

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylviane Derzelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Derzelle, S. (2015). Single-Nucleotide Polymorphism Discrimination Using High-Resolution Melting Analysis for the Genotyping of Bacillus anthracis . In: Cunha, M., Inácio, J. (eds) Veterinary Infection Biology: Molecular Diagnostics and High-Throughput Strategies. Methods in Molecular Biology, vol 1247. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2004-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2004-4_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2003-7

  • Online ISBN: 978-1-4939-2004-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics