Skip to main content

Gold Nanoparticles as a Potential Tool for Diagnosis of Fish Diseases

  • Protocol
  • First Online:
Veterinary Infection Biology: Molecular Diagnostics and High-Throughput Strategies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1247))

Abstract

Infectious diseases are a serious problem and a major contributor to severe economic losses in intensive fish culture. Therefore, rapid and sensitive detection of fish pathogens is extremely important. Although various assays for determination of fish pathogens have been developed, most of these diagnostic methods are time-consuming and laborious. To overcome these limitations, functional nanomaterials have been actively investigated to improve detection ability and rapidity of diagnostic assays. Gold nanoparticles (AuNPs) have been widely studied for their unique optical properties arising from their surface plasmon resonance, which is responsible for their large absorption and scattering properties. These unique properties are four to five orders of magnitude larger than those of conventional dyes and can be controlled by varying their sizes, shapes, and compositions. Moreover, AuNPs can be easily synthesized and functionalized with different biomolecules, including pathogen-specific oligonucleotides or antibodies. Recently, nanoparticle-based assays have been introduced as a tool for laboratory diagnosis. They have been used for the direct detection of unamplified nucleic acids in hybridization assays. Single- and double-stranded oligonucleotides can be adsorbed on AuNPs in colloidal solution under certain conditions. The result of the hybridization process can be visually detected within 1 min after addition of AuNPs, when the color of the reaction mixture changes from red to blue (positive reaction) or remains red (negative). The development of such nanoparticle-based strategies holds the potential to become powerful approaches for diagnosis of fish pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 62:408–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Jain KK (2005) Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta 358:37–54

    Article  CAS  PubMed  Google Scholar 

  3. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  PubMed  Google Scholar 

  4. Kreibig U, Genzel L (1985) Optical absorption spectra of pairs of small metal particles. Surf Sci 156:678–700

    Article  CAS  Google Scholar 

  5. Quinten M, Kreibig U (1986) Optical properties of small metal particles. Surf Sci 172:557–577

    Article  CAS  Google Scholar 

  6. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, nonradiative, and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453

    Article  CAS  Google Scholar 

  7. Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74:504–509

    Article  CAS  PubMed  Google Scholar 

  8. Nath N, Chilkoti A (2004) Label free colorimetric biosensing using nanoparticles. J Fluoresc 14:4

    Article  Google Scholar 

  9. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem 110:7238–7248

    Article  CAS  Google Scholar 

  10. Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—I. Theory. Anal Biochem 262:137–156

    Article  CAS  PubMed  Google Scholar 

  11. Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—II. Experimental characterization. Anal Biochem 262:157–176

    Article  CAS  PubMed  Google Scholar 

  12. Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB (2009) Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol 28:207–213

    Article  Google Scholar 

  13. Shaw DJ (1992) Introduction to colloid and surface chemistry, 4th edn. Butterworth–Heinemann, Oxford

    Google Scholar 

  14. Hunter RJ (2001) Foundations of colloid science. Oxford University Press, New York

    Google Scholar 

  15. Baudhuin P, Van der Smissen P, Beauvios S, Courtoy PJ (1989) Molecular Interactions between Colloidal Gold, Proteins, and Living Cells. In: Hayat MA (ed) Colloidal gold. Academic, San Diego, pp 1–17

    Google Scholar 

  16. Peak SH, Seung HL, Joung HC, Young SK (2000) Development of rapid one-step immunochromatographic assay. Methods 22:53–60

    Article  Google Scholar 

  17. Huang JT, Hou SY, Fang SB et al (2008) Development of a biochip using antibody-coated gold nanoparticles to detect specific bioparticles. J Ind Microbiol Biotechnol 35:1377–1385

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Zhang G, Lio Q et al (2008) Development of a lateral flow colloidal gold immunoassay strip for the rapid detection of enrofloxacin residues. J Agric Food Chem 56:12138–12142

    Article  CAS  PubMed  Google Scholar 

  19. Soo PC, Horng YT, Chang KC et al (2009) A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens. Mol Cell Probes 23:240–246

    Article  CAS  PubMed  Google Scholar 

  20. Chirathaworn C, Chantaramalai T, Sereemaspun A, Kongthong N, Suwancharoen D (2011) Detection of Leptospira in urine using anti-Leptospira-coated gold nanoparticles. Comp Immunol Microbiol Infect Dis 34:31–34

    Article  PubMed  Google Scholar 

  21. Saleh M, Soliman H, Haenen O, El-Matbouli M (2011) Antibody-coated gold nanoparticles immunoassay for direct detection of Aeromonas salmonicida in fish tissues. J Fish Dis 34:845–852

    Article  CAS  PubMed  Google Scholar 

  22. Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 101:14036–14039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  PubMed  Google Scholar 

  24. Jung YL, Jung C, Parab H, Li T, Park HG (2010) Direct colorimetric diagnosis of pathogen infections by utilizing thiol-labeled PCR primers and unmodified gold nanoparticles. Biosens Bioelectron 25:1941–1946

    Article  CAS  PubMed  Google Scholar 

  25. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  PubMed  Google Scholar 

  26. Storhoff JJ, Lucas AD, Garimella V, Bao YP, Müller UR (2004) Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol 22:7

    Article  Google Scholar 

  27. Li H, Rothberg L (2005) Detection of specific sequences in RNA using differential adsorption of single-stranded oligonucleotides on gold nanoparticles. Anal Chem 77:6229–6233

    Article  CAS  PubMed  Google Scholar 

  28. Shawky SM, Bald D, Azzazy HME (2010) Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles. Clin Biochem 43:1163–1168

    Article  CAS  PubMed  Google Scholar 

  29. Saleh M, Soliman H, Schachner O, El-Matbouli M (2012) Direct detection of unamplified spring viraemia of carp virus RNA using unmodified gold nanoparticles. Dis Aquat Organ 100:3–10

    Article  CAS  PubMed  Google Scholar 

  30. Saleh M, Soliman H, Sørum H, Fauske AK, El-Matbouli M (2012) A novel gold nanoparticles-based assay for rapid detection of Melissococcus plutonius, the causative agent of European foulbrood. Vet Rec 171:400

    Article  CAS  PubMed  Google Scholar 

  31. Saleh M, Gotesman M, El-Matbouli M (2013) Going for gold in the detection of Cyprinid herpesvirus-3. In: Diagnostics, Abstract Book, 277 (423) 416–427, 16th international conference on diseases of fish and shellfish, European Association of Fish Pathologists, Sep 2–6, Tampere, Finland

    Google Scholar 

  32. Grabar KC, Griffith-Freeman R, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  33. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  34. Koutná M, Vesely T, Psikal I, Hulová J (2003) Identification of spring viraemia of carp virus (SVCV) by combined RT-PCR and nested PCR. Dis Aquat Organ 55:229–235

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour El-Matbouli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Saleh, M., Soliman, H., El-Matbouli, M. (2015). Gold Nanoparticles as a Potential Tool for Diagnosis of Fish Diseases. In: Cunha, M., Inácio, J. (eds) Veterinary Infection Biology: Molecular Diagnostics and High-Throughput Strategies. Methods in Molecular Biology, vol 1247. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2004-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2004-4_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2003-7

  • Online ISBN: 978-1-4939-2004-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics