Skip to main content

Using Process Mining for Automatic Support of Clinical Pathways Design

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1246))

Abstract

The creation of tools supporting the automatization of the standardization and continuous control of healthcare processes can become a significant helping tool for clinical experts and healthcare systems willing to reduce variability in clinical practice. The reduction in the complexity of design and deployment of standard Clinical Pathways can enhance the possibilities for effective usage of computer assisted guidance systems for professionals and assure the quality of the provided care. Several technologies have been used in the past for trying to support these activities but they have not been able to generate the disruptive change required to foster the general adoption of standardization in this domain due to the high volume of work, resources, and knowledge required to adequately create practical protocols that can be used in practice. This chapter proposes the use of the PALIA algorithm, based in Activity-Based process mining techniques, as a new technology to infer the actual processes from the real execution logs to be used in the design and quality control of healthcare processes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Every NR, Hochman J, Becker R, Kopecky S, Cannon CP (2000) Critical pathways. A review. Circulation 101:461–465

    Article  CAS  Google Scholar 

  2. The Cochrane Collaboration (2010) COCHRANE Library. http://www.cochrane.org/index.htm

  3. PubMed Library (2010) National Library of Medicine and The National Institutes of Health PubMed Library. http://www.pubmed.gov

  4. Peleg M, Boxwala AA, Bernstam E, Tu SW, Greenes RA, Shortliffe EH (2001) Sharable representation of clinical guidelines in GLIF: relationship to the arden syntax. J Biomed Inform 34(3):170–181

    Article  CAS  PubMed  Google Scholar 

  5. Shahar Y, Miksch S, Johnson P (1998) The asgaard project: a task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artif Intell Med 14(1–2):29–51

    Article  CAS  PubMed  Google Scholar 

  6. WfMC (1999) Workflow management coalition terminology glossary. WFMC-TC-1011, Document Status Issue 3.0

    Google Scholar 

  7. Fernandez-Llatas C, Pileggi SF, Traver V, Benedi JM (2011) Timed parallel automaton: a mathematical tool for defining highly expressive formal workflows. In: Fifth Asia modelling symposium (AMS), 2011 IEEE computer society, pp 56–61

    Google Scholar 

  8. Naranjo JC, Fernandez-Llatas C, Pomes S, Valdivieso B (2006) Care-paths: searching the way to implement pathways. Comput Cardiol 33:285–288

    Google Scholar 

  9. Sedlmayr M, Rose T, Röhrig R, Meister M (2006) A workflow approach towards GLIF execution. In: Proceedings of the European conference on artificial intelligence (ECAI), Riva del Garda

    Google Scholar 

  10. Fox J, Black E, Chronakis I, Dunlop R, Patkar V, South M, Thomson R (2008) From guidelines to careflows: modelling and supporting complex clinical processes. Stud Health Technol Inform 139:44–62. PMID: 18806320

    PubMed  Google Scholar 

  11. Fernandez-Llatas C, Meneu T, Traver V, Benedi J-M (2013) Applying evidence-based medicine in telehealth: an interactive pattern recognition approximation. Int J Environ Res Public Health 10(11):5671–5682

    Article  PubMed Central  PubMed  Google Scholar 

  12. van der Aalst WMP, van Dongen BF, Herbst J, Maruster L, Schimm G, Weijters AJMM (2003) Workflow mining: a survey of issues and approaches. Data Knowl Eng 47:237–267

    Article  Google Scholar 

  13. Fernandez-Llatas C, Meneu T, Benedi JM, Traver V (2010) Activity-based process mining for clinical pathways computer aided design. In: 32th annual international conference of the IEEE engineering in medicine and biology society, pp 6178–6181. PMID: 21097153

    Google Scholar 

  14. Cook J, Du Z (2005) Discovery thread interactions in a concurrent system. J Syst Softw 7:285–297

    Article  Google Scholar 

  15. van der Aalst WMP (2011) Process mining: discovery, conformance and enhancement of business processes. Springer, Berlin [u.a.]

    Google Scholar 

  16. VI Framework Program I S T Project 507019 (2008) PIPS Project. Personalised Information Platform for life and health Services

    Google Scholar 

  17. Heart Cycle Consortium (2008) VII Framework Program IST Project 216695: compliance and effectiveness in HF and CHD closed-loop management 2008–2011

    Google Scholar 

  18. Weijters AJMM, Ribeiro JTS (2011) Flexible heuristics miner (FHM). In: 2011 IEEE symposium on computational intelligence and data mining (CIDM), pp 310–317

    Google Scholar 

  19. de Medeiros AKA, Weijters AJMM, van der Aalst WMP (2007) Genetic process mining: an experimental evaluation. Data Min Knowl Discov 14(2):245–304

    Article  Google Scholar 

  20. van der Aalst W, Weijters A, Maruster L (2004) Workflow mining: discovering process models from event logs. IEEE Trans Knowl Data Eng 16:1128–1142

    Article  Google Scholar 

  21. Alves de Medeiros AK, Dongen BF, van der Aalst WMP, Weijters AJMM (2004) Process mining extending the alpha algorithm to mine short loops. Technical report, WP113 Beta Paper Series Eindhoven University of Technology

    Google Scholar 

  22. Fernandez-Llatas C, Sanchez C, Traver V, Benedi JM (2008) TPAEngine: un motor de workflows basado en TPAs. In: Ciencia y Tecnologia en la Frontera. ISSN:1665-9775

    Google Scholar 

  23. Fernandez-Llatas C, Benedi J-M, Garcia-Gomez JM, Traver V (2013) Process mining for individualized behavior modeling using wireless tracking in nursing homes. Sensors 13(11):15434–15451

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Fernandez-Llatas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Fernandez-Llatas, C., Valdivieso, B., Traver, V., Benedi, J.M. (2015). Using Process Mining for Automatic Support of Clinical Pathways Design. In: Fernández-Llatas, C., García-Gómez, J. (eds) Data Mining in Clinical Medicine. Methods in Molecular Biology, vol 1246. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1985-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1985-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1984-0

  • Online ISBN: 978-1-4939-1985-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics