Skip to main content

Data Analysis in Cardiac Arrhythmias

  • Protocol
  • First Online:
Data Mining in Clinical Medicine

Abstract

Cardiac arrhythmias are an increasingly present in developed countries and represent a major health and economic burden. The occurrence of cardiac arrhythmias is closely linked to the electrical function of the heart. Consequently, the analysis of the electrical signal generated by the heart tissue, either recorded invasively or noninvasively, provides valuable information for the study of cardiac arrhythmias. In this chapter, novel cardiac signal analysis techniques that allow the study and diagnosis of cardiac arrhythmias are described, with emphasis on cardiac mapping which allows for spatiotemporal analysis of cardiac signals.

Cardiac mapping can serve as a diagnostic tool by recording cardiac signals either in close contact to the heart tissue or noninvasively from the body surface, and allows the identification of cardiac sites responsible of the development or maintenance of arrhythmias. Cardiac mapping can also be used for research in cardiac arrhythmias in order to understand their mechanisms. For this purpose, both synthetic signals generated by computer simulations and animal experimental models allow for more controlled physiological conditions and complete access to the organ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malmivuo J, Plonsey R (1995) The heart. In: Malmivuo J, Plonsey R (eds) Bioelectromagnetism. Oxford University Press, New York, pp 119–132

    Google Scholar 

  2. Olgin JE, Kalman JM, Fitzpatrick AP et al (1995) Role of right atrial endocardial structures as barriers to conduction during human type I atrial flutter. Activation and entrainment mapping guided by intracardiac echocardiography. Circulation 92:1839–1848

    Article  CAS  PubMed  Google Scholar 

  3. Calkins H, Brugada J, Packer DL et al (2007) HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. Europace 9:335–379

    Article  PubMed  Google Scholar 

  4. Antzelevitch C, Brugada P, Brugada J et al (2005) Brugada syndrome: from cell to bedside. Curr Probl Cardiol 30:9–54

    Article  PubMed Central  PubMed  Google Scholar 

  5. Antzelevitch C, Brugada P, Borggrefe M et al (2005) Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 111:659–670

    Article  PubMed  Google Scholar 

  6. Atienza F, Almendral J, Moreno J et al (2006) Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation 114:2434–2442

    Article  CAS  PubMed  Google Scholar 

  7. Atienza F, Almendral J, Jalife J et al (2009) Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm 6:33–40

    Article  PubMed Central  PubMed  Google Scholar 

  8. Nademanee K, McKenzie J, Kosar E et al (2004) A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J Am Coll Cardiol 43:2044–2053

    Article  PubMed  Google Scholar 

  9. Sanders P, Berenfeld O, Hocini MZ et al (2005) Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation 112:789–797

    Article  PubMed  Google Scholar 

  10. Atienza F, Calvo D, Almendral J et al (2011) Mechanisms of fractionated electrograms formation in the posterior left atrium during paroxysmal atrial fibrillation in humans. J Am Coll Cardiol 57:1081–1092

    Article  PubMed Central  PubMed  Google Scholar 

  11. Narayan SM, Krummen DE, Shivkumar K et al (2012) Treatment of atrial fibrillation by the ablation of localized sources CONFIRM (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. J Am Coll Cardiol 60:628–636

    Article  PubMed Central  PubMed  Google Scholar 

  12. Richter U, Faes L, Cristoforetti A et al (2011) A novel approach to propagation pattern analysis in intracardiac atrial fibrillation signals. Ann Biomed Eng 39:310–323

    Article  PubMed  Google Scholar 

  13. Morady F (1999) Radio-frequency ablation as treatment for cardiac arrhythmias. N Engl J Med 340:534–544

    Article  CAS  PubMed  Google Scholar 

  14. Isobe N, Taniguchi K, Oshima S et al (2004) Factors predicting success in cryoablation of the pulmonary veins in patients with chronic atrial fibrillation. Circ J 68:999–1003

    Article  PubMed  Google Scholar 

  15. Mack CA, Milla F, Ko W et al (2005) Surgical treatment of atrial fibrillation using argon-based cryoablation during concomitant cardiac procedures. Circulation 112:I1–I6

    Article  PubMed  Google Scholar 

  16. Haissaguerre M, Jais P, Shah DC et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666

    Article  CAS  PubMed  Google Scholar 

  17. Jalife J, Berenfeld O, Mansour M (2002) Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovasc Res 54:204–216

    Article  CAS  PubMed  Google Scholar 

  18. Porter M, Spear W, Akar JG et al (2008) Prospective study of atrial fibrillation termination during ablation guided by automated detection of fractionated electrograms. J Cardiovasc Electrophysiol 19:613–620

    Article  PubMed  Google Scholar 

  19. Stiles MK, Brooks AG, John B et al (2008) The effect of electrogram duration on quantification of complex fractionated atrial electrograms and dominant frequency. J Cardiovasc Electrophysiol 19:252–258

    Article  PubMed  Google Scholar 

  20. Di Biase L, Elayi CS, Fahmy TS et al (2009) Atrial fibrillation ablation strategies for paroxysmal patients randomized comparison between different techniques. Circ Arrhythm Electrophysiol 2:113–119

    Article  PubMed  Google Scholar 

  21. Badger TJ, Daccarett M, Akoum NW et al (2010) Evaluation of left atrial lesions after initial and repeat atrial fibrillation ablation lessons learned from delayed-enhancement MRI in repeat ablation procedures. Circ Arrhythm Electrophysiol 3:249–259

    Article  PubMed Central  PubMed  Google Scholar 

  22. Jadidi AS, Cochet H, Shah AJ et al (2013) Inverse relationship between fractionated electrograms and atrial fibrosis in persistent atrial fibrillation combined magnetic resonance imaging and high-density mapping. J Am Coll Cardiol 62:802–812

    Article  PubMed  Google Scholar 

  23. Baccalá LA, Sameshima K, Ballester G et al (1998) Studying the interaction between brain structures via directed coherence and granger causality. Appl Signal Process 1:40–48

    Article  Google Scholar 

  24. Rodrigo M, Guillem MS, Liberos A et al (2012) Identification of fibrillatory sources by measuring causal relationships. CinC 2012 39:705–708

    Google Scholar 

  25. Rodrigo M, Liberos A, Guillem MS et al (2011) Causality relation map: a novel methodology for the identification of hierarchical fibrillatory processes. CinC 2011 38:176–179

    Google Scholar 

  26. Richter U, Faes L, Ravelli F et al (2012) Propagation pattern analysis during atrial fibrillation based on sparse modeling. IEEE Trans Biomed Eng 59:1319–1328

    Article  PubMed  Google Scholar 

  27. Bruns HJ, Eckardt L, Vahlhaus C et al (2002) Body surface potential mapping in patients with Brugada syndrome: right precordial ST segment variations and reverse changes in left precordial leads. Cardiovasc Res 54:58–66

    Article  CAS  PubMed  Google Scholar 

  28. Eckardt L, Bruns HJ, Paul M et al (2002) Body surface area of ST elevation and the presence of late potentials correlate to the inducibility of ventricular tachyarrhythmias in Brugada syndrome. J Cardiovasc Electrophysiol 13:742–749

    Article  PubMed  Google Scholar 

  29. Dubuc M, Nadeau R, Tremblay G et al (1993) Pace mapping using body-surface potential maps to guide catheter ablation of accessory pathways in patients with Wolff–Parkinson–White syndrome. Circulation 87:135–143

    Article  CAS  PubMed  Google Scholar 

  30. SippensGroenewegen A, Roithinger FX, Peeters HAP et al (1998) Body surface mapping of atrial arrhythmias—atlas of paced P wave integral maps to localize the focal origin of right atrial tachycardia. J Electrocardiol 31:85–91

    Article  PubMed  Google Scholar 

  31. SippensGroenewegen A, Lesh MD, Roithinger FX et al (2000) Body surface mapping of counterclockwise and clockwise typical atrial flutter: a comparative analysis with endocardial activation sequence mapping. J Am Coll Cardiol 35:1276–1287

    Article  CAS  PubMed  Google Scholar 

  32. Guillem MS, Quesada A, Donis V et al (2009) Surface wavefront propagation maps: non-invasive characterization of atrial flutter circuit. Int J Bioelectromagn 11:22–26

    Google Scholar 

  33. Guillem MS, Climent AM, Castells F et al (2009) Noninvasive mapping of human atrial fibrillation. J Cardiovasc Electrophysiol 20: 507–513

    Article  PubMed  Google Scholar 

  34. Guillem MS, Climent AM, Millet J et al (2013) Noninvasive localization of maximal frequency sites of atrial fibrillation by body surface potential mapping. Circ Arrhythm Electrophysiol 6:294–301

    Article  PubMed  Google Scholar 

  35. MacLeod RS, Brooks DH (1998) Recent progress in inverse problems in electrocardiology. IEEE Eng Med Biol Mag 17:73–83

    Article  CAS  PubMed  Google Scholar 

  36. Rudy Y, Messingerrapport B (1988) The inverse problem in electrocardiography: solutions in terms of epicardial potentials. Crit Rev Biomed Eng 16:1047–1058

    Google Scholar 

  37. Geselowitz DB (1967) On bioelectric potentials in an inhomogeneous volume conductor. Biophys J 7:1–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32:11–22

    Article  CAS  PubMed  Google Scholar 

  39. Horacek BM, Clements JC (1997) The inverse problem of electrocardiography: a solution in terms of single- and double-layer sources on the epicardial surface. Math Biosci 144:119–154

    Article  CAS  PubMed  Google Scholar 

  40. De Munck JC (1992) A linear discretization of the volume conductor boundary integral-equation using analytically integrated elements. IEEE Trans Biomed Eng 39:986–990

    Article  PubMed  Google Scholar 

  41. Cowper GR (1972) Gaussian quadrature formulas for triangles. Int J Numer Meth Eng 7(3):405–408

    Article  Google Scholar 

  42. Tikhonov A (1963) On the solution of incorrectly posed problems and the method of regularization. Sov Math Dokl 4:1035–1038

    Google Scholar 

  43. Tikhonov A, Arsenin V (1977) Solutions of ill-posed problems. Wiley, New York

    Google Scholar 

  44. Hansen PC, Oleary DP (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14:1487–1503

    Article  Google Scholar 

  45. Pedrón-Torrecilla J, Climent AM, Liberos A et al (2012) Non-invasive estimation of the activation sequence in the atria during sinus rhythm and atrial tachyarrhythmia. CinC 2012 39:901–904

    Google Scholar 

  46. Ramanathan C, Ghanem RN, Jia P et al (2004) Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med 10:422–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Roten L, Pedersen M, Pascale P et al (2012) Noninvasive electrocardiographic mapping for prediction of tachycardia mechanism and origin of atrial tachycardia following bilateral pulmonary transplantation. J Cardiovasc Electrophysiol 23:553–555

    Article  PubMed  Google Scholar 

  48. Pedron-Torrecilla J, Climent AM, Millet J et al (2011) Characteristics of inverse-computed epicardial electrograms of Brugada syndrome patients. Conf Proc IEEE Eng Med Biol Soc 2011:235–238

    CAS  PubMed  Google Scholar 

  49. Trayanova NA (2011) Whole-heart modeling applications to cardiac electrophysiology and electromechanics. Circ Res 108:113–195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Herron TJ (2012) Optical imaging of voltage and calcium in cardiac cells & tissues. Circ Res 110:E49

    Article  CAS  Google Scholar 

  51. Lee P, Yan P, Ewart P et al (2012) Simultaneous measurement and modulation of multiple physiological parameters in the isolated heart using optical techniques. Pflugers Arch 464:403–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Lee P, Bollensdorff C, Quinn TA et al (2011) Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue. Heart Rhythm 8:1482–1491

    Article  PubMed Central  PubMed  Google Scholar 

  53. Chang P, Hsieh Y, Hsueh C et al (2013) Apamin induces early afterdepolarizations and torsades de pointes ventricular arrhythmia from failing rabbit ventricles exhibiting secondary rises in intracellular calcium. Heart Rhythm 10:1516–1524

    Article  PubMed  Google Scholar 

  54. Auerbach DS, Grzeda KR, Furspan PB et al (2011) Structural heterogeneity promotes triggered activity, reflection and arrhythmogenesis in cardiomyocyte monolayers. J Physiol 589:2363–2381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Pandit SV, Jalife J (2013) Rotors and the dynamics of cardiac fibrillation. Circ Res 112:849–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Yamazaki M, Vaquero LM, Hou L et al (2009) Mechanisms of stretch-induced atrial fibrillation in the presence and the absence of adrenocholinergic stimulation: interplay between rotors and focal discharges. Heart Rhythm 6:1009–1017

    Article  PubMed Central  PubMed  Google Scholar 

  57. Girouard SD, Pastore JM, Laurita KR et al (1996) Optical mapping in a new guinea pig model of ventricular tachycardia reveals mechanisms for multiple wavelengths in a single reentrant circuit. Circulation 93:603–613

    Article  CAS  PubMed  Google Scholar 

  58. Gray RA, Pertsov AM, Jalife J (1998) Spatial and temporal organization during cardiac fibrillation. Nature 392:75–78

    Article  CAS  PubMed  Google Scholar 

  59. Weiss JN, Qu ZL, Chen PS et al (2005) The dynamics of cardiac fibrillation. Circulation 112:1232–1240

    Article  PubMed  Google Scholar 

  60. Karma A (2013) Physics of cardiac arrhythmogenesis. Annu Rev Condens Matter Phys 4:313–337

    Article  CAS  Google Scholar 

  61. Weiss JN, Karma A, Shiferaw Y et al (2006) From pulsus to pulseless: the saga of cardiac alternans. Circ Res 98:1244–1253

    Article  CAS  PubMed  Google Scholar 

  62. Sato D, Shiferaw Y, Garfinkel A et al (2006) Spatially discordant alternans in cardiac tissue: role of calcium cycling. Circ Res 99:520–527

    Article  CAS  PubMed  Google Scholar 

  63. Gizzi A, Cherry EM, Gilmour RFJ et al (2013) Effects of pacing site and stimulation history on alternans dynamics and the development of complex spatiotemporal patterns in cardiac tissue. Front Physiol 4:71

    Article  PubMed Central  PubMed  Google Scholar 

  64. Jia Z, Bien H, Entcheva E (2008) A sensitive algorithm for automatic detection of space-time alternating signals in cardiac tissue. Conf Proc IEEE Eng Med Biol Soc 2008:153–156

    PubMed Central  PubMed  Google Scholar 

  65. Shiferaw Y, Aistrup GL, Wasserstrom JA (2012) Intracellular Ca2+ waves, afterdepolarizations, and triggered arrhythmias. Cardiovasc Res 95:265–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Harrild DM, Henriquez CS (2000) A computer model of normal conduction in the human atria. Circ Res 87:E25–E36

    Article  CAS  PubMed  Google Scholar 

  67. Seemann G, Hoper C, Sachse FB et al (2006) Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philos Trans A Math Phys Eng Sci 364:1465–1481

    Article  CAS  PubMed  Google Scholar 

  68. Gong Y, Xie F, Stein KM et al (2007) Mechanism underlying initiation of paroxysmal atrial flutter/atrial fibrillation by ectopic foci: a simulation study. Circulation 115:2094–2102

    Article  PubMed  Google Scholar 

  69. van Dam PM, van Oosterom A (2003) Atrial excitation assuming uniform propagation. J Cardiovasc Electrophysiol 14:S166–S171

    Article  PubMed  Google Scholar 

  70. Shajahan TK, Nayak AR, Pandit R (2009) Spiral-wave turbulence and its control in the presence of inhomogeneities in four mathematical models of cardiac tissue. PLoS One 4:e4738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Hodgkin AL, Huxley AF (1990) A quantitative description of membrane current and its application to conduction and excitation in nerve (reprinted from Journal of Physiology, vol 117, pp 500–544, 1952). Bull Math Biol 52:25–71

    Article  CAS  PubMed  Google Scholar 

  72. Clayton RH, Panfilov AV (2008) A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Prog Biophys Mol Biol 96:19–43

    Article  CAS  PubMed  Google Scholar 

  73. Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol Heart Circ Physiol 275:H301–H321

    CAS  Google Scholar 

  74. Nygren A, Fiset C, Firek L et al (1998) Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ Res 82:63–81

    Article  CAS  PubMed  Google Scholar 

  75. Shiferaw Y, Watanabe MA, Garfinkel A et al (2003) Model of intracellular calcium cycling in ventricular myocytes. Biophys J 85:3666–3686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Fox JJ, McHarg JL, Gilmour RF (2002) Ionic mechanism of electrical alternans. Am J Physiol Heart Circ Physiol 282:H516–H530

    CAS  PubMed  Google Scholar 

  77. Shiferaw Y, Karma A (2006) Turing instability mediated by voltage diffusion in paced cardiac cells. Proc Natl Acad Sci U S A 103:5670–5675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Garcia VM, Liberos A, Vidal AM et al (2014) Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units. Comput Biol Med 44:15–26

    Article  Google Scholar 

  79. Sato D, Xie Y, Weiss JN et al (2009) Acceleration of cardiac tissue simulation with graphic processing units. Med Biol Eng Comput 47:1011–1015

    Article  PubMed Central  PubMed  Google Scholar 

  80. van Oosterom A, Oostendorp TF, van Dam PM (2011) Potential applications of the new ECGSIM. J Electrocardiol 44:577–583

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María S. Guillem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Rodrigo, M., Pedrón-Torecilla, J., Hernández, I., Liberos, A., Climent, A.M., Guillem, M.S. (2015). Data Analysis in Cardiac Arrhythmias. In: Fernández-Llatas, C., García-Gómez, J. (eds) Data Mining in Clinical Medicine. Methods in Molecular Biology, vol 1246. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1985-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1985-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1984-0

  • Online ISBN: 978-1-4939-1985-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics