Skip to main content

Bioinformatics: Identification of Markers from Next-Generation Sequence Data

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1245))

Abstract

With the advent of sequencing technology, next-generation sequencing (NGS) technology has dramatically revolutionized plant genomics. NGS technology combined with new software tools enables the discovery, validation, and assessment of genetic markers on a large scale. Among different markers systems, simple sequence repeats (SSRs) and Single nucleotide polymorphisms (SNPs) are the markers of choice for genetics and plant breeding. SSR markers have been a choice for large-scale characterization of germplasm collections, construction of genetic maps, and QTL identification. Similarly, SNPs are the most abundant genetic variations with higher frequencies throughout the genome of plant species. This chapter discusses various tools available for genome assembly and widely focuses on SSR and SNP marker discovery.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. In: Somers DJ, Langridge P, Gustafson JP (eds) Plant genomics. Humana, Louisville, KY, pp 19–40

    Google Scholar 

  2. Edwards D, Batley J, Snowdon R (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    CAS  PubMed  Google Scholar 

  3. Berkman PJ, Lai K, Lorenc MT, Edwards D (2012) Next generation sequencing applications for wheat crop improvement. Am J Bot 99:365–371

    CAS  PubMed  Google Scholar 

  4. Duran C, Eales D, Marshall D, Imelfort M, Stiller J, Berkman PJ, Clark T, McKenzie M, Appleby N, Batley J, Basford K, Edwards D (2010) Future tools for association mapping in crop plants. Genome 53:1017–1023

    CAS  PubMed  Google Scholar 

  5. Lorenc MT, Boskovic Z, Stiller J, Duran C, Edwards D (2012) Role of bioinformatics as a tool for oilseed Brassica species. In: Edwards D, Parkin IAP, Batley J (eds) Genetics. Genomics and breeding of oilseed Brassicas. Science Publishers Inc., New Hampshire, pp 194–205

    Google Scholar 

  6. Duran C, Boskovic Z, Batley J, Edwards D (2011) Role of bioinformatics as a tool for vegetable Brassica species. In: Sadowski J (ed) Vegetable Brassicas. Science Publishers, Inc., New Hampshire, pp 406–418

    Google Scholar 

  7. Edwards D (2011) Wheat bioinformatics. In: Bonjean A, Angus W, Van Ginkel M (eds) The world wheat book. Lavoisier, Paris, pp 851–875

    Google Scholar 

  8. Batley J, Jewell E, Edwards D (2007) Automated discovery of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) molecular genetic markers. In: Edwards D (ed) Plant bioinformatics. Humana, New York, pp 473–494

    Google Scholar 

  9. Duran C, Edwards D, Batley J (2009) Molecular marker discovery and genetic map visualisation. In: Edwards D, Hanson D, Stajich J (eds) Applied bioinformatics. Springer, New York, pp 165–189

    Google Scholar 

  10. Edwards D, Batley J (2004) Plant bioinformatics: from genome to phenome. Trends Biotechnol 22:232–237

    CAS  PubMed  Google Scholar 

  11. Batley J, Edwards D (2007) SNP applications in plants. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds) Association mapping in plants. Springer, New York, pp 95–102

    Google Scholar 

  12. Duran C, Edwards D, Batley J (2009) Genetic maps and the use of synteny. In: Somers DJ, Langridge P, Gustafson JP (eds) Plant genomics. Humana, New York, pp 41–56

    Google Scholar 

  13. Edwards D, Wang X (2012) Genome Sequencing Initiatives. In: Edwards D, Parkin IAP, Batley J (eds) Genetics. Genomics and breeding of oilseed Brassicas. Science Publishers Inc., New Hampshire, pp 152–157

    Google Scholar 

  14. Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 7:1–8

    Google Scholar 

  15. Imelfort M, Edwards D (2009) De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform 10:609–618

    CAS  PubMed  Google Scholar 

  16. Imelfort M, Duran C, Batley J, Edwards D (2009) Discovering genetic polymorphisms in next-generation sequencing data. Plant Biotechnol J 7:312–317

    CAS  PubMed  Google Scholar 

  17. Nie X, Li B, Wang L, S B, Liu S, Li T, Dolezel J, Edwards D, Luo MC, Weining S (2012) Development of chromosome-arm-specific microsatellite markers in Triticum aestivum (Poaceae) using NGS technology. Am J Bot 99:e369–e371

    PubMed  Google Scholar 

  18. Lai K, Duran C, Berkman PJ, Lorenc MT, Stiller J, Manoli S, Hayden MJ, Forrest KL, Fleury D, Baumann U, Zander M, Mason AS, Batley J, Edwards D (2012) Single nucleotide polymorphism discovery from wheat next-generation sequence data. Plant Biotechnol J 10:743–749

    CAS  PubMed  Google Scholar 

  19. Duran C, Appleby N, Edwards D, Batley J (2009) Molecular genetic markers: discovery, applications, data storage and visualisation. Curr Bioinform 4:16–27

    CAS  Google Scholar 

  20. Lai K, Berkman PJ, Lorenc MT, Duran C, Smits L, Manoli S, Stiller J, Edwards D (2012) WheatGenome.info: an integrated database and portal for wheat genome information. Plant Cell Physiol 53:1–7

    Google Scholar 

  21. Lai K, Lorenc MT, Edwards D (2012) Genomic databases for crop improvement. Agronomy 2:62–73

    Google Scholar 

  22. Edwards D, Batley J (2008) Bioinformatics: fundamentals and applications in plant genetics, mapping and breeding. In: Kole C, Abbott AG (eds) Principles and practices of plant genomics. Science Publishers Inc, New Hampshire, pp 269–302

    Google Scholar 

  23. Edwards D (2007) Bioinformatics and plant genomics for staple crops improvement. In: Kang MS, Priyadarshan M (eds) Breeding major food staples. Blackwell, London, pp 93–106

    Google Scholar 

  24. Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2:e1367

    PubMed Central  PubMed  Google Scholar 

  25. Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758

    CAS  PubMed  Google Scholar 

  26. Edwards D, Forster JW, Chagné D, Batley J (2007) What are SNPs? In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds) Association mapping in plants. Springer, New York, pp 41–52

    Google Scholar 

  27. Gupta PK (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol 26:602–611

    CAS  PubMed  Google Scholar 

  28. Edwards D, Forster JW, Cogan NOI, Batley J, Chagné D (2007) Single nucleotide polymorphism discovery. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds) Association mapping in plants. Springer, New York, pp 53–76

    Google Scholar 

  29. Chagné D, Batley J, Edwards D, Forster JW (2007) Single nucleotide polymorphism genotyping in plants. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds) Association mapping in plants. Springer, New York, pp 77–94

    Google Scholar 

  30. Mogg R, Batley J, Hanley S, Edwards D, O'Sullivan H, Edwards KJ (2002) Characterization of the flanking regions of Zea mays microsatellites reveals a large number of useful sequence polymorphisms. Theor Appl Genet 105:532–543

    CAS  PubMed  Google Scholar 

  31. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352

    CAS  PubMed  Google Scholar 

  32. Blanca J, Canizares J, Roig C, Ziarsolo P, Nuez F, Pico B (2011) Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics 12:104

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11:180

    PubMed Central  PubMed  Google Scholar 

  34. Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, Bhanuprakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur M, Kavikishor B, Shah T, Srinivasan R, Lohse M, Xiao Y, Town CD, Cook DR, May GD, Varshney RK (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Meintjes P, Duran C, Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Thierer T, Ashton B, Heled J (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    PubMed Central  PubMed  Google Scholar 

  36. Drummond AJ, Ashton BSB, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious v5.4. http://www.geneious.com

  37. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Jewell E, Robinson A, Savage D, Erwin T, Love CG, Lim GA, Li X, Batley J, Spangenberg GC, Edwards D (2006) SSRPrimer and SSR taxonomy tree: biome SSR discovery. Nucleic Acids Res 34:W656–W659

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Robinson AJ, Love CG, Batley J, Barker G, Edwards D (2004) Simple sequence repeat marker loci discovery using SSR primer. Bioinformatics 20:1475–1476

    CAS  PubMed  Google Scholar 

  40. Duran C, Singhania R, Raman H, Batley J, Edwards D (2013) Predicting polymorphic EST-SSRs in silico. Mol Ecol Resour 13:538–545

    CAS  PubMed  Google Scholar 

  41. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    CAS  PubMed  Google Scholar 

  42. Kolpakov R, Bana G, Kucherov G (2003) mreps: efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res 31:3672–3678

    CAS  PubMed Central  PubMed  Google Scholar 

  43. da Maia LC, Palmieri DA, de Souza VQ, Kopp MM, de Carvalho FI, Costa de Oliveira A (2008) SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genomics 2008:412696

    PubMed Central  PubMed  Google Scholar 

  44. Martins WS, Lucas DC, Neves KF, Bertioli DJ (2009) WebSat – a web software for microsatellite marker development. Bioinformation 3:282–283

    PubMed Central  PubMed  Google Scholar 

  45. Taneda A (2004) Adplot: detection and visualization of repetitive patterns in complete genomes. Bioinformatics 20:701–708

    CAS  PubMed  Google Scholar 

  46. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Sobreira TJ, Durham AM, Gruber A (2006) TRAP: automated classification, quantification and annotation of tandemly repeated sequences. Bioinformatics 22:361–362

    CAS  PubMed  Google Scholar 

  48. Wexler Y, Yakhini Z, Kashi Y, Geiger D (2005) Finding approximate tandem repeats in genomic sequences. J Comput Biol 12:928–942

    CAS  PubMed  Google Scholar 

  49. Reneker J, Shyu CR, Zeng P, Polacco JC, Gassmann W (2004) ACMES: fast multiple-genome searches for short repeat sequences with concurrent cross-species information retrieval. Nucleic Acids Res 32:W649–W653

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Parisi V, De Fonzo V, Aluffi-Pentini F (2003) STRING: finding tandem repeats in DNA sequences. Bioinformatics 19:1733–1738

    CAS  PubMed  Google Scholar 

  51. Karaca M, Bilgen M, Onus AN, Ince AG, Elmasulu SY (2005) Exact tandem repeats analyzer (E-TRA): a new program for DNA sequence mining. J Genet 84:49–54

    CAS  PubMed  Google Scholar 

  52. Mudunuri SB, Nagarajaram HA (2007) IMEx: imperfect microsatellite extractor. Bioinformatics 23:1181–1187

    CAS  PubMed  Google Scholar 

  53. Kofler R, Schlotterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23:1683–1685

    CAS  PubMed  Google Scholar 

  54. Bizzaro JW, Marx KA (2003) Poly: a quantitative analysis tool for simple sequence repeat (SSR) tracts in DNA. BMC Bioinformatics 4:22

    PubMed Central  PubMed  Google Scholar 

  55. Tarailo-Graovac M, Chen N (2009) Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformat Chapter 4:Unit 4 10

    Google Scholar 

  56. Castelo AT, Martins W, Gao GR (2002) TROLL–tandem repeat occurrence locator. Bioinformatics 18:634–636

    CAS  PubMed  Google Scholar 

  57. Kurtz S, Schleiermacher C (1999) REPuter: fast computation of maximal repeats in complete genomes. Bioinformatics 15:426–427

    CAS  PubMed  Google Scholar 

  58. Betley JN, Frith MC, Graber JH, Choo S, Deshler JO (2002) A ubiquitous and conserved signal for RNA localization in chordates. Curr Biol 12:1756–1761

    CAS  PubMed  Google Scholar 

  59. Faircloth BC (2008) msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94

    CAS  PubMed  Google Scholar 

  60. Perry JC, Rowe L (2011) Rapid microsatellite development for water striders by next-generation sequencing. J Hered 102:125–129

    CAS  PubMed  Google Scholar 

  61. Garg R, Patel RK, Tyagi AK, Jain M (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Collins LA, Torrero MN, Franzblau SG (1998) Green fluorescent protein reporter microplate assay for high-throughput screening of compounds against Mycobacterium tuberculosis. Antimicrob Agents Chemother 42:344–347

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    PubMed Central  PubMed  Google Scholar 

  64. Zhang J, Wheeler DA, Yakub I, Wei S, Sood R, Rowe W, Liu PP, Gibbs RA, Buetow KH (2005) SNPdetector: a software tool for sensitive and accurate SNP detection. PLoS Comput Biol 1:e53

    PubMed Central  PubMed  Google Scholar 

  65. Frohler S, Dieterich C (2010) ACCUSA–accurate SNP calling on draft genomes. Bioinformatics 26:1364–1365

    PubMed  Google Scholar 

  66. You FM, Deal KR, Wang J, Britton MT, Fass JN, Lin D, Dandekar AM, Leslie CA, Aradhya M, Luo MC, Dvorak J (2012) Genome-wide SNP discovery in walnut with an AGSNP pipeline updated for SNP discovery in allogamous organisms. BMC Genomics 13:354

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Grant JR, Arantes AS, Liao X, Stothard P (2011) In-depth annotation of SNPs arising from resequencing projects using NGS-SNP. Bioinformatics 27:2300–2301

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Shen Y, Wan Z, Coarfa C, Drabek R, Chen L, Ostrowski EA, Liu Y, Weinstock GM, Wheeler DA, Gibbs RA, Yu F (2010) A SNP discovery method to assess variant allele probability from next-generation resequencing data. Genome Res 20:273–280

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Chen K, McLellan MD, Ding L, Wendl MC, Kasai Y, Wilson RK, Mardis ER (2007) PolyScan: an automatic indel and SNP detection approach to the analysis of human resequencing data. Genome Res 17:659–666

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Lorenc MT, Hayashi S, Stiller J, Lee H, Manoli S, Ruperao P, Visendi P, Berkman PJ, Lai K, Batley J, Edwards D (2012) Discovery of single nucleotide polymorphisms in complex genomes using SGSautoSNP. Biology 1:370–382

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    PubMed Central  PubMed  Google Scholar 

  72. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    CAS  PubMed  Google Scholar 

  73. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Li H, Ruan J, Durbin RM (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Lunter G, Goodson M (2011) Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res 21:936–939

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Homer N, Merriman B, Nelson SF (2009) BFAST: an alignment tool for large scale genome resequencing. PLoS One 4:e7767

    PubMed Central  PubMed  Google Scholar 

  77. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Lee HC, Lai K, Lorenc MT, Imelfort M, Duran C, Edwards D (2012) Bioinformatics tools and databases for analysis of next-generation sequence data. Brief Funct Genomics 11:12–24

    CAS  PubMed  Google Scholar 

  79. Batley J, Edwards D (2009) Mining for single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) molecular genetic markers. In: Posada D (ed) Bioinformatics for DNA sequence analysis. Humana, New York, pp 303–322

    Google Scholar 

  80. Batley J, Barker G, O'Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Duran C, Appleby N, Clark T, Wood D, Imelfort M, Batley J, Edwards D (2009) AutoSNPdb: an annotated single nucleotide polymorphism database for crop plants. Nucleic Acids Res 37:D951–D953

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Savage D, Batley J, Erwin T, Logan E, Love CG, Lim GA, Mongin E, Barker G, Spangenberg GC, Edwards D (2005) SNPServer: a real-time SNP discovery tool. Nucleic Acids Res 33:W493–W495

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Barker G, Batley J, O'Sullivan H, Edwards KJ, Edwards D (2003) Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics 19:421–422

    CAS  PubMed  Google Scholar 

  84. Duran C, Appleby N, Vardy M, Imelfort M, Edwards D, Batley J (2009) Single nucleotide polymorphism discovery in barley using autoSNPdb. Plant Biotechnol J 7:326–333

    CAS  PubMed  Google Scholar 

  85. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    CAS  PubMed  Google Scholar 

  87. Cavagnaro F, Senalik DA, Yang L, Simon W, Harkins TT, Kodira CD, Huang S, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 11:569

    PubMed Central  PubMed  Google Scholar 

  88. Hong C, Piao ZY, Kang TW, Batley J, Yang TJ, Hur YK, Bhak J, Park BS, Edwards D, Lim Y (2007) Genomic distribution of simple sequence repeats in Brassica rapa. Mol Cells 23:349–356

    CAS  PubMed  Google Scholar 

  89. Hopkins CJ, Cogan NOI, Hand M, Jewell E, Kaur J, Li X, Lim GAC, Ling AE, Love C, Mountford H, Todorovic M, Vardy M, Spangenberg GC, Edwards D, Batley J (2007) Sixteen new simple sequence repeat markers from Brassica juncea expressed sequences and their cross-species amplification. Mol Ecol Notes 7:697–700

    CAS  Google Scholar 

  90. Ling AE, Kaur J, Burgess B, Hand M, Hopkins CJ, Li X, Love CG, Vardy M, Walkiewicz M, Spangenberg G, Edwards D, Batley J (2007) Characterization of simple sequence repeat markers derived in silico from Brassica rapa bacterial artificial chromosome sequences and their application in Brassica napus. Mol Ecol Notes 7:273–277

    CAS  Google Scholar 

  91. Burgess B, Mountford H, Hopkins CJ, Love C, Ling AE, Spangenberg GC, Edwards D, Batley J (2006) Identification and characterization of simple sequence repeat (SSR) markers derived in silico from Brassica oleracea genome shotgun sequences. Mol Ecol Notes 6:1191–1194

    CAS  Google Scholar 

  92. Batley J, Hopkins CJ, Cogan NOI, Hand M, Jewell E, Kaur J, Kaur S, Li X, Ling AE, Love C, Mountford H, Todorovic M, Vardy M, Walkiewicz M, Spangenberg GC, Edwards D (2007) Identification and characterization of simple sequence repeat markers from Brassica napus expressed sequences. Mol Ecol Notes 7:886–889

    CAS  Google Scholar 

  93. Keniry A, Hopkins CJ, Jewell E, Morrison B, Spangenberg GC, Edwards D, Batley J (2006) Identification and characterization of simple sequence repeat (SSR) markers from Fragaria x ananassa expressed sequences. Mol Ecol Notes 6:319–322

    CAS  Google Scholar 

  94. Mortimer J, Batley J, Love C, Logan E, Edwards D (2005) Simple sequence repeat (SSR) and GC distribution in the Arabidopsis thaliana genome. J Plant Biotechnol 7:17–25

    Google Scholar 

  95. Hong C, Plaha P, Koo DH, Yang TJ, Choi SR, Lee YK, Uhm T, Bang JW, Edwards D, Bancrofts I, Park BS, Lee J, Lim Y (2006) A survey of the Brassica rapa genome by BAC-End sequence analysis and comparison with Arabidopsis thaliana. Mol Cells 22:300–307

    PubMed  Google Scholar 

  96. Hamilton J, Hansey CN, Whitty BR, Stoffel K, Massa AN, Van Deynze A, De Jong WS, Douches DS, Buell CR (2011) Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genomics 12:302

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Berkman PJ, Skarshewski A, Lorenc MT, Lai K, Duran C, Ling EYS, Stiller J, Smits L, Imelfort M, Manoli S, McKenzie M, Kubalakova M, Simkova H, Batley J, Fleury D, Dolezel J, Edwards D (2011) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J 9:768–775

    CAS  PubMed  Google Scholar 

  98. Berkman PJ, Skarshewski A, Manoli S, Lorenc MT, Stiller J, Smits L, Lai K, Campbell E, Kubalakova M, Simkova H, Batley J, Dolezel J, Hernandez P, Edwards D (2012) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet 124:423–432

    CAS  PubMed  Google Scholar 

  99. Berkman PJ, Visendi P, Lee HC, Stiller J, Manoli S, Lorenc MT, Lai K, Batley J, Fleury D, Šimková H, Kubaláková M, Weining S, Doležel J, Edwards D (2013) Dispersion and domestication shaped the genome of bread wheat. Plant Biotechnol J 11:564–571

    CAS  PubMed  Google Scholar 

  100. Hayward A, Dalton-Morgan J, Mason A, Zander M, Edwards D, Batley J (2012) SNP discovery and applications in Brassica napus. J Plant Biotechnol 39:1–12

    Google Scholar 

  101. Azam S, Thakur V, Ruperao P, Shah T, Balaji J, Amindala B, Farmer AD, Studholme DJ, May GD, Edwards D, Jones JD, Varshney RK (2012) Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome. Am J Bot 99:186–192

    CAS  PubMed  Google Scholar 

  102. Rungis D, Berube Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J, Ritland K (2004) Robust simple sequence repeat markers for spruce (Picea sp) from expressed sequence tags. Theor Appl Genet 109:1283–1294

    CAS  PubMed  Google Scholar 

  103. Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510

    CAS  PubMed  Google Scholar 

  104. Sharma D, Issac B, Raghava G, Ramaswamy R (2004) Spectral repeat finder (SRF): identification of repetitive sequences using Fourier transformation. Bioinformatics 20:1405–1412

    CAS  PubMed  Google Scholar 

  105. Tang J, Vosman B, Voorrips RE, van der Linden CG, Leunissen JA (2006) QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species. BMC Bioinformatics 7:438

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ruperao, P., Edwards, D. (2015). Bioinformatics: Identification of Markers from Next-Generation Sequence Data. In: Batley, J. (eds) Plant Genotyping. Methods in Molecular Biology, vol 1245. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1966-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1966-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1965-9

  • Online ISBN: 978-1-4939-1966-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics