Skip to main content

Optogenetic Dissection of Neural Circuit Function in Behaving Animals

  • Protocol
  • First Online:
Neural Tracing Methods

Part of the book series: Neuromethods ((NM,volume 92))

  • 2308 Accesses

Abstract

One of the major challenges of modern neuroscience is to identify the anatomical and functional wiring of specific brain circuits to understand their respective role in higher brain functions. Gain- or loss-of-function assays using electrical, lesion, genetic, and pharmacological manipulation of molecular and cellular targets as well as correlative analysis of neural activities during selective behavior have substantially contributed to our knowledge on the function of neural network interactions. Technologies for imaging and controlling neural activities have progressively open new perspectives in the investigation of the neural substrates of brain functions. Optogenetics combines optical stimulation of genetically defined cell types through activation of microbial opsin-mediated insertion of light-sensitive ion channels to provide robust gain- or loss-of-function modulation of specific cell types at high temporal resolution. This powerful technology has emerged as a revolutionary force within modern neuroscience and has provided significant new insights into brain functions. Here, we will describe the successive steps for in vitro and in vivo optogenetics dissection of arousal circuits in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    Article  CAS  PubMed  Google Scholar 

  2. Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de Lecea L (2009) Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 29:10939–10949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Carter ME et al (2012) Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A 109:E2635–E2644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Adamantidis AR et al (2011) Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci 31:10829–10835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Tsai H-C et al (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324:1080–1084

    Article  CAS  PubMed  Google Scholar 

  6. Witten IB et al (2011) Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72:721–733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Brown MTC et al (2012) Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492:452–456

    Article  CAS  PubMed  Google Scholar 

  8. Stamatakis AM, Stuber GD (2012) Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat Neurosci 15:1105–1107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Stuber GD et al (2011) Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475:377–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Stamatakis AM, Stuber GD (2012) Optogenetic strategies to dissect the neural circuits that underlie reward and addiction. Cold Spring Harb Perspect Med 2. doi:10.1101/cshperspect.a011924

    Google Scholar 

  11. van Zessen R, Phillips JL, Budygin EA, Stuber GD (2012) Activation of VTA GABA neurons disrupts reward consumption. Neuron 73:1184–1194

    Article  PubMed Central  PubMed  Google Scholar 

  12. Jennings JH et al (2013) Distinct extended amygdala circuits for divergent motivational states. Nature 496:224–228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Vaziri A, Emiliani V (2012) Reshaping the optical dimension in optogenetics. Curr Opin Neurobiol 22:128–137

    Article  CAS  PubMed  Google Scholar 

  14. Ramirez S et al (2013) Creating a false memory in the hippocampus. Science 341:387–391

    Article  CAS  PubMed  Google Scholar 

  15. Liu X et al (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Nakashiba T et al (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149:188–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Goshen I et al (2011) Dynamics of retrieval strategies for remote memories. Cell 147:678–689

    Article  CAS  PubMed  Google Scholar 

  18. Warden MR et al (2012) A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature 492:428–432

    CAS  PubMed  Google Scholar 

  19. Tye KM et al (2011) Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471:358–362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kim S-Y et al (2013) Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496:219–223

    Article  CAS  PubMed  Google Scholar 

  21. Tye KM et al (2013) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493:537–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lin D et al (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Yizhar O et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. LeChasseur Y et al (2011) A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat Methods 8:319–325

    Article  CAS  PubMed  Google Scholar 

  25. Nagel G et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  26. Nagel G et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  28. Miesenbock G (2009) The optogenetic catechism. Science 326:395–399

    Article  PubMed  Google Scholar 

  29. Deisseroth K (2012) Optogenetics and psychiatry: applications, challenges, and opportunities. Biol Psychiatry 71:1030–1032

    Article  PubMed  Google Scholar 

  30. Zhang F, Wang L-P, Boyden ES, Deisseroth K (2006) Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 3:785–792

    Article  CAS  PubMed  Google Scholar 

  31. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71:9–34

    Article  CAS  PubMed  Google Scholar 

  32. Aravanis AM et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156

    Article  PubMed  Google Scholar 

  33. Mattis J et al (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159–172

    Article  CAS  PubMed Central  Google Scholar 

  34. Gunaydin LA et al (2010) Ultrafast optogenetic control. Nat Neurosci 13:387–392

    Article  CAS  PubMed  Google Scholar 

  35. Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234

    Article  CAS  PubMed  Google Scholar 

  36. Zhang F et al (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from volvox carteri. Nat Neurosci 11:631–633

    Article  PubMed Central  PubMed  Google Scholar 

  37. Mukohata Y (1994) Comparative studies on ion pumps of the bacterial rhodopsin family. Biophys Chem 50:191–201

    Article  CAS  PubMed  Google Scholar 

  38. Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2:e299

    Article  PubMed Central  PubMed  Google Scholar 

  39. Han X et al (2009) Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62:191–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zhang F et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  41. Gradinaru V et al (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Rogan SC, Roth BL (2011) Remote control of neuronal signaling. Pharmacol Rev 63:291–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Arenkiel BR, Klein ME, Davison IG, Katz LC, Ehlers MD (2008) Genetic control of neuronal activity in mice conditionally expressing TRPV1. Nat Methods 5:299–302

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Schanuel SM, Bell KA, Henderson SC, McQuiston AR (2008) Heterologous expression of the invertebrate FMRFamide-gated sodium channel as a mechanism to selectively activate mammalian neurons. Neuroscience 155:374–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Zemelman BV, Lee GA, Ng M, Miesenböck G (2002) Selective photostimulation of genetically chARGed neurons. Neuron 33:15–22

    Article  CAS  PubMed  Google Scholar 

  46. Li P, Slimko EM, Lester HA (2002) Selective elimination of glutamate activation and introduction of fluorescent proteins into a Caenorhabditis elegans chloride channel. FEBS Lett 528:77–82

    Article  CAS  PubMed  Google Scholar 

  47. Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458:1025–1029

    Article  CAS  PubMed  Google Scholar 

  48. Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57:634–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Taniguchi H et al (2011) A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71:995–1013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Tanaka KF et al (2012) Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system. Cell Rep 2:397–406

    Article  CAS  PubMed  Google Scholar 

  51. Sparta DR et al (2012) Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat Protoc 7:12–23

    Article  CAS  Google Scholar 

  52. Cetin A, Komai S, Eliava M, Seeburg PH, Osten P (2006) Stereotaxic gene delivery in the rodent brain. Nat Protoc 1:3166–3173

    Article  CAS  PubMed  Google Scholar 

  53. Paxinos G, Franklin K (2014) The mouse brain in stereotaxic coordinates.

    Google Scholar 

  54. Zhang F et al (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5:439–456

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Adamantidis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Herrera, C.G., Adamantidis, A., Zhang, F., Deisseroth, K., de Lecea, L. (2015). Optogenetic Dissection of Neural Circuit Function in Behaving Animals. In: Arenkiel, B. (eds) Neural Tracing Methods. Neuromethods, vol 92. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1963-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1963-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1962-8

  • Online ISBN: 978-1-4939-1963-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics