Skip to main content

Wheat Germ Agglutinin (WGA) Tracing: A Classic Approach for Unraveling Neural Circuitry

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 92))

Abstract

Neuroanatomical tracing is a fundamental technique that has long been considered the primary method for visualizing brain networks in all areas of neuroscience. Although there are many new approaches for tracing neuronal connections, the lectin-based wheat germ agglutinin (WGA) tracing approach is still widely used, and it is firmly regarded as a classic method in the field. WGA has been used extensively to unravel both simple and complex neural networks in the central and peripheral nervous systems. It is reliable and versatile, as projections are labeled in the anterograde and retrograde directions. It is robust enough for tracking fine pathways in small animals, and it is stable enough for long-term tracing of neurons in large species. In some systems, WGA can even travel transynaptically to label the connected neurons. In this chapter, we outline the technical and conceptual details that have made WGA a powerful tool, and we discuss practical considerations for effectively using WGA. We also discuss the recent use of an Alexa conjugated WGA approach for multicolor labeling of different tracts in the same animal.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Acharya S, Rayborn ME, Hollyfield JG (1998) Characterization of SPACR, a sialoprotein associated with cones and rods present in the interphotoreceptor matrix of the human retina: immunological and lectin binding analysis. Glycobiology 8(10):997–1006

    Article  CAS  PubMed  Google Scholar 

  2. Basbaum AI, Menetrey D (1987) Wheat germ agglutinin-apoHRP gold: a new retrograde tracer for light- and electron-microscopic single- and double-label studies. J Comp Neurol 261(2):306–318

    Article  CAS  PubMed  Google Scholar 

  3. Basbaum AI (1989) A rapid and simple silver enhancement procedure for ultrastructural localization of the retrograde tracer WGAapoHRP-Au and its use in double-label studies with post-embedding immunocytochemistry. J Histochem Cytochem 37(12):1811–1815

    Article  CAS  PubMed  Google Scholar 

  4. Borges LF, Sidman RL (1982) Axonal transport of lectins in the peripheral nervous system. J Neurosci 2(5):647–653

    CAS  PubMed  Google Scholar 

  5. Bráz JM, Basbaum AI (2009) Triggering genetically-expressed transneuronal tracers by peripheral axotomy reveals convergent and segregated sensory neuron-spinal cord connectivity. Neuroscience 163(4):1220–1232

    Article  PubMed Central  PubMed  Google Scholar 

  6. Braz JM, Rico B, Basbaum AI (2002) Transneuronal tracing of diverse CNS circuits by Cre-mediated induction of wheat germ agglutinin in transgenic mice. Proc Natl Acad Sci U S A 99(23):15148–15153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cajal SR (1995) Histologie du Système Nerveux de l'Homme et des Vertébrés (Maloine, Paris, 1909−1911). In: Swanson N, Swanson LW (eds) Santiago Ramón y Cajal: histology of the nervous system in man and vertebrates. Oxford University Press, New York

    Google Scholar 

  8. Ceccarelli B, Hurlbut WP, Mauro A (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57(2):499–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Collins CE, Stepniewska I, Kaas JH (2001) Topographic patterns of v2 cortical connections in a prosimian primate (Galago garnetti). J Comp Neurol 431(2):155–167

    Article  CAS  PubMed  Google Scholar 

  10. Coulter JD, Sullivan MC, Ruda MA (1980) Lectins as markers of neuronal connectivity (Abstract). Neuroscience 6:339

    Google Scholar 

  11. Cowan WM, Gottlieb DI, Hendrickson AE, Price JL, Woolsey TA (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37(1):21–51

    Article  CAS  PubMed  Google Scholar 

  12. DeOlmos J, Hardy H, Heimer L (1978) The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP-study. J Comp Neurol 181(2):213–244

    Article  CAS  Google Scholar 

  13. Dumas M, Schwab ME, Thoenen H (1979) Retrograde axonal transport of specific macromolecules as a tool for characterizing nerve terminal membranes. J Neurobiol 10(2):179–197

    Article  CAS  PubMed  Google Scholar 

  14. Edwards SB (1972) The ascending and descending projections of the red nucleus in the cat: an experimental study using an autoradiographic tracing method. Brain Res 48:45–63

    Article  CAS  PubMed  Google Scholar 

  15. Erichsen JT, May PJ (2002) The pupillary and ciliary components of the cat Edinger-Westphal nucleus a transsynaptic transport investigation. Vis Neurosci 19:15–29

    Article  PubMed  Google Scholar 

  16. Fink RP, Heimer L (1967) Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res 4(4):369–374

    Article  CAS  PubMed  Google Scholar 

  17. Furue M, Uchida S, Shinozaki A, Imagawa T, Hosaka YZ, Uehara M (2011) Trajectories in the spinal cord and the mediolateral spread in the cerebellar cortex of spinocerebellar fibers from the unilateral lumbosacral enlargement in the chicken. Brain Behav Evol 77(1):45–54

    Google Scholar 

  18. Gebre SA, Reeber SL, Sillitoe RV (2012) Parasagittal compartmentation of cerebellar mossy fibers as revealed by the patterned expression of vesicular glutamate transporters VGLUT1 and VGLUT2. Brain Struct Funct 217:165–180

    Article  CAS  PubMed  Google Scholar 

  19. Gerfen CR, O'leary DD, Cowan WM (1982) A note on the transneuronal transport of wheat germ agglutinin-conjugated horseradish peroxidase in the avian and rodent visual systems. Exp Brain Res 48(3):443–448

    Article  CAS  PubMed  Google Scholar 

  20. Goldstein IJ, Hayes CE (1978) The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem 35:127–340

    Article  CAS  PubMed  Google Scholar 

  21. Gonatas NK, Harper C, Mizutani T, Gonatas JO (1979) Superior sensitivity of conjugates of horseradish peroxidase with wheat germ agglutinin for studies of retrograde axonal transport. J Histochem Cytochem 27(3):728–734

    Article  CAS  PubMed  Google Scholar 

  22. Goshgarian HG, Buttry JL (2014) The pattern and extent of retrograde transsynaptic transport of WGA-Alexa 488 in the phrenic motor system is dependent upon the site of application. J Neurosci Methods 222:156–164

    Article  PubMed  Google Scholar 

  23. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88(1):49–92

    Article  CAS  PubMed  Google Scholar 

  24. Hendrickson A, Edwards SB (1978) The use of axonal transport for autoradiographic tracing of pathways in the central nervous system. Neuroanat Res Tech 1978:242–285

    Google Scholar 

  25. Herzog J, Kümmel H (2000) Fixation of transsynaptically transported WGA-HRP and fluorescent dyes used in combination. J Neurosci Methods 101(2):149–156

    Article  CAS  PubMed  Google Scholar 

  26. Hardy H, Heimer L (1977) A safer and more sensitive substitute for diamino-benzidine in the light microscopic demonstration of retrograde and anterograde axonal transport of HRP. Neurosci Lett 5(5):235–40

    Google Scholar 

  27. Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57(2):315–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Higo S, Udaka N, Tamamaki N (2007) Long-range GABAergic projection neurons in the cat neocortex. J Comp Neurol 503(3):421–431

    Article  PubMed  Google Scholar 

  29. Holtzman E, Teichberg S, Abrahams SJ et al (1973) Notes on synaptic vesicles and related structures, endoplasmic reticulum, lysosomes and peroxisomes in nervous tissue and the adrenal medulla. J Histochem Cytochem 21(4):349–385

    Article  CAS  PubMed  Google Scholar 

  30. Itaya SK, Van Hoesen GW, Barnes CL (1986) Anterograde transsynaptic transport of WGA-HRP in the limbic system of rat and monkey. Brain Res 398(2):397–402

    Article  CAS  PubMed  Google Scholar 

  31. Kim DS, Jeon SE, Park KC (2004) Oxidation of indole-3-acetic acid by horseradish peroxidase induces apoptosis in G361 human melanoma cells. Cell Signal 16(1):81–88

    Article  CAS  PubMed  Google Scholar 

  32. Klop EM, Mouton LJ, Holstege G (2005) Neurons in the lateral sacral cord of the cat project to periaqueductal grey, but not to thalamus. Eur J Neurosci 21(8):2159–2166

    Article  PubMed  Google Scholar 

  33. Klop EM, Mouton LJ, Holstege G (2002) Nucleus retroambiguus projections to the periaqueductal gray in the cat. J Comp Neurol 445(1):47–58

    Article  PubMed  Google Scholar 

  34. Lafuente J, Uriguen M, Cervós-navarro J (1999) Changes in glucidic radicals in contused human brains. Neuropathology 19(1):28–32

    Article  CAS  PubMed  Google Scholar 

  35. Lahiri D, Landers RA, Hollyfield JG (1995) Development of the interphotoreceptor matrix in Xenopus laevis. J Morphol 223(3):325–339

    Article  CAS  PubMed  Google Scholar 

  36. Lee HS, Kim MA, Waterhouse BD (2005) Retrograde double-labeling study of common afferent projections to the dorsal raphe and the nuclear core of the locus coeruleus in the rat. J Comp Neurol 481(2):179–193

    Article  PubMed  Google Scholar 

  37. LeVine D, Kaplan MJ, Greenaway PJ (1972) The purification and characterization of wheat-germ agglutinin. Biochem J 129(4):847–856

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Margolis TP, LaVail JH (1981) Rate of anterograde axonal transport of [125I]wheat germ agglutinin from retina to optic tectum in the chick. Brain Res 229(1):218–223

    Article  CAS  PubMed  Google Scholar 

  39. Margolis TP, Marchand CM, Kistler HB Jr, LaVail LH (1981) Uptake and anterograde axonal transport of wheat germ agglutinin from retina to optic tectum in the chick. J Cell Biol 89(1):152–156

    Article  CAS  PubMed  Google Scholar 

  40. Margrie TW, Brecht M, Sakmann B (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444(4):491–498

    Article  CAS  PubMed  Google Scholar 

  41. Margrie TW, Meyer AH, Caputi A et al (2003) Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39(6):911–918

    Article  CAS  PubMed  Google Scholar 

  42. Mason CA, Gregory E (1984) Postnatal maturation of cerebellar mossy and climbing fibers: transient expression of dual features on single axons. J Neurosci 4(7):1715–1735

    CAS  PubMed  Google Scholar 

  43. Mesulam M (1982) Tracing neural connections with horseradish peroxidase. John Wiley & Sons, Ed Marsel M Mesulam

    Google Scholar 

  44. Mesulam MM, Rosene DL (1977) Differential sensitivity between blue and brown reaction procedures for HRP neurohistochemistry. Neurosci Lett 5(1–2):7–14

    Article  CAS  PubMed  Google Scholar 

  45. Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26(2):106–117

    Article  CAS  PubMed  Google Scholar 

  46. Nicolson GL (1974) The interactions of lectins with animal cell surfaces. Int Rev Cytol 39:89–190

    Article  CAS  PubMed  Google Scholar 

  47. O'leary DM, Gerfen CR, Cowan WM (1983) The development and restriction of the ipsilateral retinofugal projection in the chick. Brain Res 312(1):93–109

    Article  PubMed  Google Scholar 

  48. Oeltmann TN, Wiley RG (1986) Wheat germ agglutinin-ricin A-chain conjugate is neuronotoxic after vagal injection. Brain Res 377(2):221–228

    Article  CAS  PubMed  Google Scholar 

  49. Peschanski M, Ralston HJ (1985) Light and electron microscopic evidence of transneuronal labeling with WGA-HRP to trace somatosensory pathways to the thalamus. J Comp Neurol 236(1):29–41

    Article  CAS  PubMed  Google Scholar 

  50. Phelan KD, Sacaan A, Gallagher JP (1996) Retrograde labeling of rat dorsolateral septal nucleus neurons following intraseptal injections of WGA-HRP. Synapse 22(3):261–268

    Article  CAS  PubMed  Google Scholar 

  51. Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J Neurosci Methods 65(2):113–136

    Article  CAS  PubMed  Google Scholar 

  52. Prochnow N, Lee P, Hall WC, Schmidt M (2007) In vitro properties of neurons in the rat pretectal nucleus of the optic tract. J Neurophysiol 97(5):3574–3584

    Article  CAS  PubMed  Google Scholar 

  53. Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S (eds) (2007) The chick brain in stereotaxic coordinates: an atlas correlating avian and mammalian neuroanatomy. Academic Press, San Diego, CA

    Google Scholar 

  54. Quigg M, Elfvin LG, Aldskogius H (1990) Anterograde transsynaptic transport of WGA-HRP from spinal afferents to postganglionic sympathetic cells of the stellate ganglion of the guinea pig. Brain Res 518(1–2):173–178

    Article  CAS  PubMed  Google Scholar 

  55. Reeber SL, Gebre SA, Filatova N, Sillitoe RV (2011) Revealing neural circuit topography in multi-color. J Vis Exp 57:pii:3371

    Google Scholar 

  56. Reeber SL, Gebre SA, Sillitoe RV (2011) Fluorescence mapping of afferent topography in three dimensions. Brain Struct Funct 216:159–169

    Article  PubMed  Google Scholar 

  57. Reeber SL, Sillitoe RV (2011) Patterned expression of a cocaine- and amphetamine-regulated transcript peptide reveals complex circuit topography in the rodent cerebellar cortex. J Comp Neurol 519:1781–1796

    Article  CAS  PubMed  Google Scholar 

  58. Sakai N, Insolera R, Sillitoe RV, Shi SH, Kaprielian Z (2012) Axon sorting within the spinal cord marginal zone via Robo-mediated inhibition of N-cadherin controls spinocerebellar tract formation. J Neurosci 32(44):15377–15387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Sawczuk A, Covell DA (1999) Wheat germ agglutinin conjugated to TRITC: a novel approach for labeling primary projection neurons of peripheral afferent nerves. J Neurosci Methods 93(2):139–147

    Article  CAS  PubMed  Google Scholar 

  60. Schwab ME, Javoy-Agid F, Agid Y (1978) Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system. Brain Res 152(1):145–150

    Article  CAS  PubMed  Google Scholar 

  61. Shen Y, Chen J, Liu Q et al (2011) Effect of wheat germ agglutinin density on cellular uptake and toxicity of wheat germ agglutinin conjugated PEG-PLA nanoparticles in Calu-3 cells. Int J Pharm 413(1–2):184–193

    Article  CAS  PubMed  Google Scholar 

  62. Sillitoe RV, Vogel MW, Joyner AL (2010) Engrailed homeobox genes regulate establishment of the cerebellar afferent circuit map. J Neurosci 30:10015–10024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Song Q, Yao L, Huang M et al (2012) Mechanisms of transcellular transport of wheat germ agglutinin-functionalized polymeric nanoparticles in Caco-2 cells. Biomaterials 33(28):6769–6782

    Article  CAS  PubMed  Google Scholar 

  64. Steindler DA (1982) Differences in the labeling of axons of passage by wheat germ agglutinin after uptake by cut peripheral nerve versus injections within the central nervous system. Brain Res 250(1):159–167

    Article  CAS  PubMed  Google Scholar 

  65. Stöckel K, Dumas M, Thoenen H (1978) Uptake and subsequent retrograde axonal transport of nerve growth factor (NFG) are not influenced by neuronal activity. Neurosci Lett 10(1–2):61–64

    Article  PubMed  Google Scholar 

  66. Sugita M, Shiba Y (2005) Genetic tracing shows segregation of taste neuronal circuitries for bitter and sweet. Science 309(5735):781–785

    Article  CAS  PubMed  Google Scholar 

  67. Tabuchi K, Sawamoto K, Suzuki E et al (2000) GAL4/UAS-WGA system as a powerful tool for tracing Drosophila transsynaptic neural pathways. J Neurosci Res 59(1):94–99

    Article  CAS  PubMed  Google Scholar 

  68. Teune TM, Van der Burg J, De Zeeuw CI, Voogd J, Ruigrok TJ (1998) Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol 392(2):164–178

    Article  CAS  PubMed  Google Scholar 

  69. Toonen M, Van Dijken H, Holstege JC et al (1998) Light microscopic and ultrastructural investigation of the dopaminergic innervation of the ventrolateral outgrowth of the rat inferior olive. Brain Res 802(1–2):267–273

    Article  CAS  PubMed  Google Scholar 

  70. Van der Want JJ, Klooster J, Cardozo BN, De Weerd H, Liem RS (1997) Tract-tracing in the nervous system of vertebrates using horseradish peroxidase and its conjugates: tracers, chromogens and stabilization for light and electron microscopy. Brain Res Brain Res Protoc 1(3):269–279

    Article  PubMed  Google Scholar 

  71. Van Rossum J (1969) Corticonuclear and corticovestibular projections from the cerebellum. Thesis, Van Gorcum, Assen

    Google Scholar 

  72. Vanderhorst VG, Terasawa E, Ralston HJ, Holstege G (2000) Monosynaptic projections from the lateral periaqueductal gray to the nucleus retroambiguus in the rhesus monkey: implications for vocalization and reproductive behavior. J Comp Neurol 424(2):251–268

    Article  CAS  PubMed  Google Scholar 

  73. Vanderhorst VG, Terasawa E, Ralston HJ (2001) Monosynaptic projections from the nucleus retroambiguus region to laryngeal motoneurons in the rhesus monkey. Neuroscience 107(1):117–125

    Article  CAS  PubMed  Google Scholar 

  74. Vogel MW, Prittie J (1994) Topographic spinocerebellar mossy fiber projections are maintained in the lurcher mutant. J Comp Neurol 343(2):341–351

    Article  CAS  PubMed  Google Scholar 

  75. Voogd J, Broere G, van Rossum J (1969) The medio-lateral distribution of the spinocerebellar projection in the anterior lobe and the simple lobule in the cat and a comparison with some other afferent fibre systems. Psychiatr Neurol Neurochir 72(1):137–151

    CAS  PubMed  Google Scholar 

  76. Walling SG, Brown RA, Miyasaka N, Yoshihara Y, Harley CW (2012) Selective wheat germ agglutinin (WGA) uptake in the hippocampus from the locus coeruleus of dopamine-β-hydroxylase-WGA transgenic mice. Front Behav Neurosci 6:23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Wood JG, Byrd FI, Gurd JW (1981) Lectin cytochemistry of carbohydrates on cell membranes of rat cerebellum. J Neurocytol 10(1):149–159

    Article  CAS  PubMed  Google Scholar 

  78. Yoshihara Y, Mizuno T, Nakahira M et al (1999) A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22(1):33–41

    Article  CAS  PubMed  Google Scholar 

  79. Yoshihara Y (2002) Visualizing selective neural pathways with WGA transgene: combination of neuroanatomy with gene technology. Neurosci Res 44(2):133–140

    Article  CAS  PubMed  Google Scholar 

  80. Zaborszky L, Wouterlood FG, Lanciego JL (eds) (2010) Neuroanatomical tract-tracing, molecules, neurons, and systems. Springer, New York

    Google Scholar 

  81. Zhang J, Kleinschmidt J, Sun P, Witkovsky P (1994) Identification of cone classes in Xenopus retina by immunocytochemistry and staining with lectins and vital dyes. Vis Neurosci 11(6):1185–1192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from Baylor College of Medicine and Texas Children’s Hospital (Houston, TX). R.V.S. was supported by the Caroline Wiess Law Fund for Research in Molecular Medicine, a BCM IDDRC Project Development Award, and by BCM IDDRC Grant Number 5P30HD024064 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, by Grant Number C06RR029965 from the National Center for Research Resources and by 1R01NS089664-01. Tissue work was performed in the BCM IDDRC Neuropathology Core. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy V. Sillitoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Levy, S.L., White, J.J., Sillitoe, R.V. (2015). Wheat Germ Agglutinin (WGA) Tracing: A Classic Approach for Unraveling Neural Circuitry. In: Arenkiel, B. (eds) Neural Tracing Methods. Neuromethods, vol 92. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1963-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1963-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1962-8

  • Online ISBN: 978-1-4939-1963-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics