Skip to main content

A Survey of Current Neuroanatomical Tracing Techniques

  • Protocol
  • First Online:
Neural Tracing Methods

Part of the book series: Neuromethods ((NM,volume 92))

Abstract

This chapter provides a systematic description of neuroanatomical tracing methods, with a brush of history. Tracing can be based on uptake and transport of tracer in living neurons but can also be based on physical diffusion in living neurons after intracellular injection of tracer or, in fixed tissue as is the case of Golgi silver staining, based on complex anorganic chemical reactions. Because of the special fixation status of human brain tissue, the physicochemical methods are prominent with this kind of nervous tissue. Nowadays, the transport methods enjoy popularity in animal connectivity models because they produce fast and decisive results in terms of specific connectivity of functional systems. Transport-based tracing methods are best suited to visualize long-axon projections. For the study of short projection axons and interneurons, more sophisticated methods need to be applied such as pericellular injection or intracellular filling with dye after neurophysiological recording in living slice preparations or in vivo.

The chapter discusses the current neuroanatomical tracing methods and its equipment and procedures, starting with the “mother of retrograde tracing methods”: the technique of injection, uptake, and transport of the enzyme horseradish peroxidase. It continues with fluorescent dye tracing. The fluorescent compounds have two advantages: they are extremely stable and they can easily be combined with immunofluorescence to determine the neurochemical identity of the labeled neurons.

The most commonly used anterograde tracers are Phaseolus vulgaris-Leucoagglutinin (PHA-L), which requires immunohistochemical detection, and biotinylated dextran amine (BDA), which is detected via reaction with streptavidin conjugated to a reporter molecule. Single and multiple fluorescence methods receive much attention because they so perfectly combine with modern laser scanning microscopes and digital image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Diaminobenzidine and benzidine derivates such as BDHC are considered carcinogenic and should be treated with care, that is, in a dedicated container in a fume hood. Gloves should be worn at all times to avoid contact with the skin. All material in contact with DAB and BDHC should be decontaminated with chlorine after the experiment, and care must be taken not to contaminate the microscope used to monitor at intervals the progress of the histochemical reaction.

References

  1. Antal M, Freund TF, Somogyi P, McIlhinney RA (1990) Simultaneous anterograde labelling of two afferent pathways to the same target area with Phaseolus vulgaris leucoagglutinin and Phaseolus vulgaris leucoagglutinin conjugated to biotin or dinitrophenol. J Chem Neuroanat 3:1–9

    CAS  PubMed  Google Scholar 

  2. Arai R, Jacobowitz DM, Deura S (1994) Distribution of calretinin, calbindin-D28k, and parvalbumin in the rat thalamus. Brain Res Bull 33:595–614

    CAS  PubMed  Google Scholar 

  3. Ausdenmoore BD, Markwell ZA, Ladle DR (2011) Localization of presynaptic inputs on dendrites of individually labeled neurons in three dimensional space using a center distance algorithm. J Neurosci Meth 200:129–143

    Google Scholar 

  4. Baba Y (2000) New methods of dye application for staining motor neurons in an insect. J Neurosci Meth 98:165–169

    CAS  Google Scholar 

  5. Bachmann L, Salpeter MM (1969) Resolution in electron microscope radioautography. J Cell Biol 41:1–32

    PubMed Central  PubMed  Google Scholar 

  6. Bácskai T, Veress G, Halasi G, Matesz C (2010) Crossing dendrites of the hypoglossal motoneurons: possible morphological substrate of coordinated and synchronized tongue movements of the frog, Rana esculenta. Brain Res 1313:89–96

    PubMed  Google Scholar 

  7. Barbas-Henry HA, Wouterlood FG (1988) Synaptic connections between primary trigeminal afferents and accessory abducens motoneurons in the monitor lizard, Varanus exanthematicus. J Comp Neurol 267:387–397

    CAS  PubMed  Google Scholar 

  8. Basbaum AI, Menétrey D (1987) Wheat germ agglutinin–apoHRP gold: a new retrograde tracer for light- and electron-microscopic single and double-label studies. J Comp Neurol 261:306–318

    CAS  PubMed  Google Scholar 

  9. Bazer GT, Ebbesson SO (1984) A simplified cobalt-lysine method for tracing axon trajectories in the central nervous system of vertebrates. Neurosci Lett 51:315–318

    CAS  PubMed  Google Scholar 

  10. Belichenko PV, Dahlström A (1994) Dual channel confocal laser scanning microscopy of lucifer yellow-microinjected human brain cells combined with Texas red immunofluorescence. J Neurosci Meth 52:111–118

    CAS  Google Scholar 

  11. Beliën JAM, Wouterlood FG (2012) Confocal laser scanning: of instrument, computer processing and men. In: Wouterlood FG (ed) Cellular imaging techniques for neuroscience and beyond. Academic, New York, pp 2–34

    Google Scholar 

  12. Bentivoglio M, Kuypers HG, Catsman-Berrevoets CE, Dann O (1979) Fluorescent retrograde neuronal labeling in rat by means of substances binding specifically to adenine-thymine rich DNA. Neurosci Lett 12:235–240

    CAS  PubMed  Google Scholar 

  13. Bentivoglio M, Van der Kooy D, Kuypers HGJM (1979) The organization of the efferent projections of the substantia nigra in the rat. A retrograde fluorescent double labeling study. Brain Res 174:1–17

    CAS  PubMed  Google Scholar 

  14. Bentivoglio M, Kuypers HG, Catsman-Berrevoets CE, Loewe H, Dann O (1980) Two new fluorescent retrograde neuronal tracers which are transported over long distances. Neurosci Lett 18:25–30

    CAS  PubMed  Google Scholar 

  15. Bevan MD, Crossman AR, Bolam JP (1994) Neurons projecting from the entopeduncular nucleus to the thalamus receive convergent synaptic inputs from the subthalamic nucleus and the neostriatum in the rat. Brain Res 659:99–109

    CAS  PubMed  Google Scholar 

  16. Bharali DJ, Klejbor I, Stachowiak EK et al (2005) Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci U S A 102:11539–11544

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Bianchini P, Mondal PP, Dilipkumar S, Cella Zanacchi F et al (2012) Multiphoton microscopy advances towards super resolution. In: Wouterlood FG (ed) Cellular imaging techniques for neuroscience and beyond. Academic Press, New York, pp 121–140

    Google Scholar 

  18. Björklund A, Skagerberg G (1979) Simultaneous use of retrograde fluorescent tracers and fluorescence histochemistry for convenient and precise mapping of monoaminergic projections and collateral arrangements in the CNS. J Neurosci Meth 1:261–277

    Google Scholar 

  19. Blackstad TW (1965) Mapping of experimental axon degeneration by electron microscopy of Golgi preparations. Z Zellforsch Mikrosk Anat 67:819–834

    CAS  PubMed  Google Scholar 

  20. Blackstad TW (1975) Electron microscopy of experimental axonal degeneration in photochemically modified Golgi preparations: a procedure for precise mapping of nervous connections. Brain Res 95:191–210

    CAS  PubMed  Google Scholar 

  21. Boulland J-L, Jenstad M, Boekel A, Wouterlood FG et al (2009) Vesicular glutamate and GABA transporters sort to distinct sets of vesicles at a symmetric synapse. Cerebral Cortex 19:241–248

    PubMed Central  PubMed  Google Scholar 

  22. Brandt HM, Apkarian AV (1992) Biotin-dextran: a sensitive anterograde tracer for neuroanatomic studies in rat and monkey. J Neurosci Meth 45:35–40

    CAS  Google Scholar 

  23. Brown A (2003) Axon transport of membranous and nonmembranous cargoes: a unified perspective. J Cell Biol 160:817–821

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Buhl EH, Lübke J (1989) Intracellular lucifer yellow injection in fixed brain slices combined with retrograde tracing, light and electron microscopy. Neuroscience 28:3–16

    CAS  PubMed  Google Scholar 

  25. Carson KA, Mesulam MM (1982) Electron microscopic demonstration of neural connections using horseradish peroxidase: a comparison of the tetramethylbenzidine procedure with seven other histochemical methods. J Histochem Cytochem 30:425–435

    CAS  PubMed  Google Scholar 

  26. Chakravarthy S, Keck T, Roelandse M et al (2008) Cre-dependent expression of multiple transgenes in isolated neurons of the adult forebrain. PLoS One 3:e3059

    PubMed Central  PubMed  Google Scholar 

  27. Chang HT (1991) Anterograde transport of Lucifer yellow-dextran conjugate. Brain Res Bull 26:813–816

    CAS  PubMed  Google Scholar 

  28. Chang HT, Kuo H, Whittaker JA, Cooper NG (1990) Light and electron microscopic analysis of projection neurons retrogradely labeled with Fluoro-Gold: notes on the application of antibodies to Fluoro-Gold. J Neurosci Meth 35:31–37

    CAS  Google Scholar 

  29. Chase R, Tolloczko B (1993) Tracing neural pathways in snail olfaction: from the tip of the tentacles to the brain and beyond. Microsc Res Tech 24:214–230

    CAS  PubMed  Google Scholar 

  30. Chen S, Aston-Jones G (1998) Axonal collateral-collateral transport of tract tracers in brain neurons: false anterograde labelling and useful tool. Neuroscience 82:1151–1163

    CAS  PubMed  Google Scholar 

  31. Colman DR, Scalia F, Cabrales E (1976) Light and electron microscopic observations on the anterograde transport of horseradish peroxidase in the optic pathway in the mouse and rat. Brain Res 102:156–163

    CAS  PubMed  Google Scholar 

  32. Conte WL, Kamishina H, Reep RL (2009) The efficacy of the fluorescent conjugates of cholera toxin subunit B for multiple retrograde tracing in the central nervous system. Brain Struct Funct 213:3667–3673

    Google Scholar 

  33. Conte WL, Kamishina H, Reep RL (2009) Multiple neuroanatomical tract-tracing using fluorescent Alexa Fluor conjugates of cholera toxin subunit B in rats. Nat Protoc 4:1158–1166

    Google Scholar 

  34. Conturo TE, Lori NF, Cull TS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96:10422–10427

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Coveñas R, De León M, Narváez JA, Aguirre JA, González-Barón S (1995) Calbindin D-28K-immunoreactivity in the cat diencephalon: an immunocytochemical study. Arch Ital Biol 133:263–272

    PubMed  Google Scholar 

  36. Cowan RL, Sesack SR, Van Bockstaele EJ et al (1994) Analysis of synaptic inputs and targets of physiologically characterized neurons in rat frontal cortex: combined in vivo intracellular recording and immunolabeling. Synapse 17:101–114

    CAS  PubMed  Google Scholar 

  37. Cowan WM, Gottlieb DI, Hendrickson AE et al (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37:21–51

    CAS  PubMed  Google Scholar 

  38. Cowan WM, Cuénod M (1975) The use of axonal transport for the study of neural connections: a retrospective survey. In: Cowan MW, Cuénod M (eds) The use of axonal transport for studies of neuronal connectivity. Elsevier, Amsterdam, pp 1–24

    Google Scholar 

  39. Dai J, Swaab DF, Buijs RM (1998) Recovery of axonal transport in "dead neurons". Lancet 351:499–500

    CAS  PubMed  Google Scholar 

  40. Dai J, Van Der Vliet J, Swaab DF, Buijs RM (1998) Postmortem anterograde tracing of intrahypothalamic projections of the human dorsomedial nucleus of the hypothalamus. J Comp Neurol 401:16–33

    CAS  PubMed  Google Scholar 

  41. Dall'Oglio A, Ferme D, Brusco J, Moreira JE, Rasia-Filho AA (2010) The "single-section" Golgi method adapted for formalin-fixed human brain and light microscopy. J Neurosci Meth 189:51–55

    Google Scholar 

  42. Dederen PJ, Gribnau AA, Curfs MH (1994) Retrograde neuronal tracing with cholera toxin B subunit: comparison of three different visualization methods. Histochem J 26:856–862

    CAS  PubMed  Google Scholar 

  43. Deller T, Naumann T, Frotscher M (2000) Retrograde and anterograde tracing combined with transmitter identification and electron microscopy. J Neurosci Meth 103:117–126

    CAS  Google Scholar 

  44. Dolleman-van der Weel MJ, Wouterlood FG, Witter MP (1994) Multiple anterograde tracing, combining Phaseolus vulgaris leucoagglutinin with rhodamine- and biotin-conjugated dextran amine. J Neurosci Meth 51:9–21

    CAS  Google Scholar 

  45. Dolleman-van Der Weel MJ, Witter MP (1996) Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J Comp Neurol 364:637–650

    CAS  PubMed  Google Scholar 

  46. Droz B, Leblond CP (1962) Migration of proteins along the axons of the sciatic nerve. Science 137:1047–1048

    CAS  PubMed  Google Scholar 

  47. Droz B, Leblond CP (1963) Axonal migration of proteins in the central nervous system and peripheral nerves as shown by radioautography. J Comp Neurol 121:325–346

    CAS  PubMed  Google Scholar 

  48. Duque A, Zaborszky L (2006) Juxtacellular labeling of individual neurons in vivo: from electrophysiology to synaptology. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract-tracing 3: molecules – neurons – systems. Springer, New York, pp 197–236

    Google Scholar 

  49. Edwards SB, Hendrickson A (1981) The autoradiographic tracing of axonal connections in the central nervous system. In: Heimer L, RoBards M (eds) Neuroanatomical tract-tracing methods. Plenum, New York, pp 171–205

    Google Scholar 

  50. Egensperger R, Holländer H (1988) Electron microscopic visualization of fluorescent microspheres used as a neuronal tracer. J Neurosci Meth 23:181–186

    CAS  Google Scholar 

  51. Einstein G (1988) Intracellular injection of lucifer yellow into cortical neurons in lightly fixed sections and its application to human autopsy material. J Neurosci Meth 26:95–103

    CAS  Google Scholar 

  52. Erro E, Lanciego JL, Giménez-Amaya JM (1999) Relationships between thalamostriatal neurons and pedunculopontine projections to the thalamus: a neuroanatomical tract-tracing study in the rat. Exp Brain Res 127:162–170

    CAS  PubMed  Google Scholar 

  53. Ewers H (2012) Nano resolution optical imaging through localization microscopy. In: Wouterlood FG (ed) Cellular imaging techniques for neuroscience and beyond. Academic Press, New York, pp 81–100

    Google Scholar 

  54. Fairén A (2005) Pioneering a golden age of cerebral microcircuits: the births of the combined Golgi–electron microscope methods. Neuroscience 136:607–614

    PubMed  Google Scholar 

  55. Fairén A, Peters A, Saldanha J (1977) A new procedure for examining Golgi impregnated neurons by light and electron microscopy. J Neurocytol 6:311–337

    PubMed  Google Scholar 

  56. Fan RJ, Marin-Burgin A, French KA, Otto FW (2005) A dye mixture (Neurobiotin and Alexa 488) reveals extensive dye-coupling among neurons in leeches; physiology confirms the connections. J Comp Physiol A 191:1157–1171

    Google Scholar 

  57. Fink RP, Heimer L (1967) Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res 4:369–374

    CAS  PubMed  Google Scholar 

  58. Foster M, Sherrington CS (1897) A textbook of physiology. Macmillan, New York, p 1252, www.archive.org/stream/textbookofphysio1897fost#page/n5/mode/2up

    Google Scholar 

  59. Fregerslev S, Blackstad TW, Fredens K, Holm MJ (1971) Golgi potassium-dichromate silver-nitrate impregnation. Nature of the precipitate studied by x-ray powder diffraction methods. Histochemie 26:289–304

    CAS  PubMed  Google Scholar 

  60. Freund TF, Somogyi P (1983) The section-Golgi impregnation procedure. 1. Description of the method and its combination with histochemistry after intracellular iontophoresis or retrograde transport of horseradish peroxidase. Neuroscience 9:463–474

    CAS  PubMed  Google Scholar 

  61. Fritzsch B, Sonntag R (1991) Sequential double labelling with different fluorescent dyes coupled to dextran amines as a tool to estimate the accuracy of tracer application and of regeneration. J Neurosci Meth 39:9–17

    CAS  Google Scholar 

  62. Frotscher M, Rinne U, Hassler R, Wagner A (1981) Termination of cortical afferents on identified neurons in the caudate nucleus of the cat. a combined Golgi-EM degeneration study. Exp Brain Res 41:329–337

    CAS  PubMed  Google Scholar 

  63. Fuller PM, Prior DJ (1975) Cobalt iontophoresis techniques for tracing afferent and efferent connections in the vertebrate CNS. Brain Res 88:211–220

    CAS  PubMed  Google Scholar 

  64. Gabbott PL, Somogyi J (1984) The 'single' section Golgi-impregnation procedure: methodological description. J Neurosci Meth 11:221–230

    CAS  Google Scholar 

  65. Gauthier J, Parent M, Lévesque M, Parent A (1999) The axonal arborisation of single nigrostriatal axons in rats. Brain Res 834:228–232

    CAS  PubMed  Google Scholar 

  66. Gerfen CR (2004) Basal ganglia. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier, Oxford, pp 455–508

    Google Scholar 

  67. Gerfen CR, Sawchenko PE (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res 290:219–238

    CAS  PubMed  Google Scholar 

  68. Gerfen CR, Sawchenko PE (1985) A method for anterograde axonal tracing of chemically specified circuits in the central nervous system: combined Phaseolus vulgaris-leucoagglutinin (PHA-L) tract tracing and immunohistochemistry. Brain Res 343:144–150

    CAS  PubMed  Google Scholar 

  69. Giolli RA, Karamanlidis AN (1978) The study of degenerating nerve fibers using silver-impregnation methods. In: Robertson RT (ed) Neuroanatomical research techniques (Methods in psychology, Thompson RF (ed)). Academic Press, New York, pp 212–240

    Google Scholar 

  70. Glover JC, Petursdottir G, Jansen JKS (1986) Fluorescent dextran amines used as axonal tracers in the nervous system of chicken embryo. J Neurosci Meth 18:243–254

    CAS  Google Scholar 

  71. Gluhbecovic N, Williams TH (1980) The human brain. A photographic guide. Harper & Row Hagerstown, MD, p 176

    Google Scholar 

  72. Golgi C (1873) Sulla struttura della sostanza grigia del cervello (Comunicazione preventiva). Gaz Med Ital (Lombardia) 33:244–246

    Google Scholar 

  73. Gonatas NK, Harper C, Mizutani T, Gonatas JO (1979) Superior sensitivity of conjugates of horseradish peroxidase with wheat germ agglutinin for studies of retrograde axonal transport. J Histochem Cytochem 27:728–734

    CAS  PubMed  Google Scholar 

  74. Gonzalo N, Moreno A, Erdozain MA et al (2001) A sequential protocol combining dual neuroanatomical tract-tracing with the visualization of local circuit neurons within the striatum. J Neurosci Meth 111:59–66

    CAS  Google Scholar 

  75. Graham RC Jr, Karnovsky MJ (1965) The histochemical demonstration of monoamine oxidase activity by coupled peroxidatic oxidation. J Histochem Cytochem 13:604–605

    CAS  PubMed  Google Scholar 

  76. Hackney CM, Altman JS (1982) Cobalt mapping of the nervous system: how to avoid artifacts. J Neurobiol 13:403–411

    CAS  PubMed  Google Scholar 

  77. Hagmann P, Cammoun L, Gigandet X et al (2010) MR connectomics: principles and challenges. J Neurosci Meth 194:34–45

    Google Scholar 

  78. Hamelryck TW, Dao-Thi M-H, Poortmans F et al (1996) The crystallographic structure of phytohemagglutinin-L. J Biol Chem 271:20479–20485

    CAS  PubMed  Google Scholar 

  79. Hancock MB (1986) Two-color immunoperoxidase staining: visualization of anatomic relationships between immunoreactive neural elements. Am J Anat 175:343–352

    CAS  PubMed  Google Scholar 

  80. Harvey AR, Ehlert E, de Wit J et al (2009) Use of GFP to analyze morphology, connectivity, and function of cells in the central nervous system. In: Hicks BW (ed) Methods in molecular biology, viral applications of green fluorescent protein, vol 515. Humana, New York, pp 63–95

    Google Scholar 

  81. Herkenham M (1978) The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat. J Comp Neurol 177:589–610

    CAS  PubMed  Google Scholar 

  82. Hendrickson AE (1982) The orthograde axoplamic transport autoradiographic tracing technique and its implications for additional neuroanatomical analysis of the striate cortex. In: Chan-Palay V, Palay SL (eds) Cytochemical methods in neuroanatomy. Alan R. Liss, New York, pp 1–16

    Google Scholar 

  83. Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6:201–214

    CAS  PubMed  Google Scholar 

  84. Holstege JC, Kuypers HG (1987) Brainstem projections to lumbar motoneurons in rat. I. An ultrastructural study using autoradiography and the combination of autoradiography and horseradish peroxidase histochemistry. Neuroscience 21:345–367

    CAS  PubMed  Google Scholar 

  85. Honig M (1993) DiI labelling. Neurosci Protoc 93-050-16-01-20

    Google Scholar 

  86. Honig MG, Hume RI (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol 103:171–187

    CAS  PubMed  Google Scholar 

  87. Hoover WB, Vertes RP (2012) Collateral projections from nucleus reuniens of thalamus to hippocampus and medial prefrontal cortex in the rat: a single and double retrograde fluorescent labeling study. Brain Struct Funct 217:191–209

    PubMed  Google Scholar 

  88. Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Meth 25:1–11

    CAS  Google Scholar 

  89. Horikawa K, Powell EW (1986) Comparison of techniques for retrograde labeling using the rat's facial nucleus. J Neurosci Meth 17:287–296

    CAS  Google Scholar 

  90. Huisman AM, Ververs B, Cavada C, Kuypers HG (1984) Collateralization of brainstem pathways in the spinal ventral horn in rat as demonstrated with the retrograde fluorescent double-labeling technique. Brain Res 300:362–367

    CAS  PubMed  Google Scholar 

  91. Innocenti GM, Clarke S, Kraftsik R (1986) Interchange of callosal and association projections in the developing visual cortex. J Neurosci 6:1384–1409

    CAS  PubMed  Google Scholar 

  92. Itoh K, Konishi A, Nomura S et al (1979) Application of coupled oxidation reaction to electron microscopic demonstration of horseradish peroxidase: cobalt-glucose oxidase method. Brain Res 175:341–346

    CAS  PubMed  Google Scholar 

  93. Izzo PN, Graybiel AM, Bolam JP (1987) Characterization of substance P- and [Met]enkephalin-immunoreactive neurons in the caudate nucleus of cat and ferret by a single section Golgi procedure. Neuroscience 20:577–587

    CAS  PubMed  Google Scholar 

  94. Jarrard LE (1989) On the use of ibotenic acid to lesion selectively different components of the hippocampal formation. J Neurosci Meth 29:251–259

    CAS  Google Scholar 

  95. Jongen-Rêlo AL, Amaral DG (2000) A double labeling technique using WGA-apoHRP-gold as a retrograde tracer and non-isotopic in situ hybridization histochemistry for the detection of mRNA. J Neurosci Meth 101:9–17

    Google Scholar 

  96. Jonsson G (1983) Chemical lesioning techniques: Monoamine neurotoxins. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol I, Methods in chemical neuroanatomy. Elsevier, New York, pp 463–507

    Google Scholar 

  97. Jorritsma-Byham B, Witter MP, Wouterlood FG (1994) Combined anterograde tracing with biotinylated dextran-amine, retrograde tracing with Fast blue and intracellular filling of neurons with Lucifer yellow. An electron microscopic method. J Neurosci Meth 52:153–160

    CAS  Google Scholar 

  98. Kajiwara R, Wouterlood FG, Sah A et al (2008) Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1. An anatomical study in the rat. Hippocampus 18:266–280

    PubMed  Google Scholar 

  99. Katz LC, Burkhalter A, Dreyer WJ (1984) Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 310:498–500

    CAS  PubMed  Google Scholar 

  100. Keizer K, Kuypers HG, Huisman AM, Dann O (1983) Diamidino yellow dihydrochloride (DY 2HCl); a new fluorescent retrograde neuronal tracer, which migrates only very slowly out of the cell. Exp Brain Res 51:179–191

    CAS  PubMed  Google Scholar 

  101. King MA, Louis PM, Hunter BE, Walker DW (1989) Biocytin: a versatile anterograde neuroanatomical tract-tracing alternative. Brain Res 497:361–367

    CAS  PubMed  Google Scholar 

  102. Kirby ED, Jensen K, Goosens KA, Kaufer D (2012) Stereotaxic surgery for excitotoxic lesion of specific brain areas in the adult rat. J Vis Exp 65:4079

    PubMed  Google Scholar 

  103. Kita H, Armstrong W (1991) A biotin-containing compound N-(2-aminoethyl)biotinamide for intracellular labeling and neuronal tracing studies: comparison with biocytin. J Neurosci Meth 37:141–150

    CAS  Google Scholar 

  104. Kobayashi RM (1978) Neurochemical effects of lesions. In: Robertson RT (ed) Neuroanatomical research techniques. Methods in physiological psychology, vol 2. Academic Press, New York, pp 317–336

    Google Scholar 

  105. Kristensson K (1970) Transport of fluorescent protein in peripheral nerves. Acta Neuropathol 16:293–300

    CAS  PubMed  Google Scholar 

  106. Kristensson K, Olsson Y (1971) Uptake and retrograde transport of peroxidase in hypoglossal neurons. Electron microscopical localization in the neuronal perikaryon. Acta Neuropathol 19:1–9

    CAS  PubMed  Google Scholar 

  107. Kristensson K, Olsson Y (1971) Retrograde axonal transport of protein. Brain Res 29:363–365

    CAS  PubMed  Google Scholar 

  108. Kristensson K, Olsson Y, Sjöstrand J (1971) Axonal uptake and retrograde transport of exogenous proteins in the hypoglossal nerve. Brain Res 32:399–406

    CAS  PubMed  Google Scholar 

  109. Kuypers HGJM, Catsman-Berrevoets CE, Padt RE (1977) Retrograde axonal transport of fluorescent substances in the rat's forebrain. Neurosci Lett 6:127–135

    CAS  PubMed  Google Scholar 

  110. Kuypers HG, Bentivoglio M, van der Kooy D, Catsman-Berrevoets CE (1979) Retrograde transport of bisbenzimide and propidium iodide through axons to their parent cell bodies. Neurosci Lett 12:1–7

    CAS  PubMed  Google Scholar 

  111. Kuypers HG, Bentivoglio M, Catsman-Berreveoets CE, Bharos AT (1980) Double retrograde neuronal labeling through divergent axon collaterals, using two fluorescent tracers with the same excitation wavelength which label different features of the cell. Exp Brain Res 40:383–392

    CAS  PubMed  Google Scholar 

  112. Lakos S, Basbaum AI (1986) Benzidine dihydrochloride as a chromogen for single- and double-label light and electron microscopic immunocytochemical studies. J Histochem Cytochem 34:1047–1056

    CAS  PubMed  Google Scholar 

  113. Lanciego JL, Wouterlood FG (1994) Dual anterograde axonal tracing with Phaseolus vulgaris leucoagglutinin (PHA-L) and biotinylated dextran amine (BDA). Neurosci Protoc 94-050-06-01-13

    Google Scholar 

  114. Lanciego JL, Goede PH, Witter MP, Wouterlood FG (1997) Use of peroxidase substrate Vector VIP for multiple staining in light microscopy. J Neurosci Meth 74:1–7

    CAS  Google Scholar 

  115. Lanciego JL, Wouterlood FG, Erro E, Giménez-Amaya JM (1998) Multiple axonal tracing: simultaneous detection of three tracers in the same section. Histochem Cell Biol 110:509–515

    CAS  PubMed  Google Scholar 

  116. Lanciego JL, Luquin MR, Guillén J, Giménez-Amaya JM (1998) Multiple neuroanatomical tracing in primates. Brain Res Protoc 2:323–332

    CAS  Google Scholar 

  117. Lanciego JL, Wouterlood FG, Erro E et al (2000) Complex brain circuits studied via simultaneous and permanent detection of three transported neuroanatomical tracers in the same histological section. J Neurosci Meth 103:127–135

    CAS  Google Scholar 

  118. Lapper SR, Bolam JP (1991) The anterograde and retrograde transport of neurobiotin in the central nervous system of the rat: comparison with biocytin. J Neurosci Meth 39:163–174

    CAS  Google Scholar 

  119. LaVail JH, LaVail MM (1972) Retrograde axonal transport in the central nervous system. Science 176:1416–1417

    CAS  PubMed  Google Scholar 

  120. Lázár G (1978) Application of cobalt-filling technique to show retinal projections in the frog. Neuroscience 3:725–736

    PubMed  Google Scholar 

  121. Li D, Seeley PJ, Bliss TVP, Raisman G (1990) Intracellular injection of biocytin into fixed tissue and its detection with avidin-HRP. Neurosci Lett Suppl 38:581

    Google Scholar 

  122. Liu WL, Behbehani MM, Shipley MT (1993) Intracellular filling in fixed brain slices using Miniruby, a fluorescent biocytin compound. Brain Res 608:78–86

    CAS  PubMed  Google Scholar 

  123. Llewellyn-Smith IJ, Martin CL, Arnolda LF, Minson JB (2000) Tracer-toxins: cholera toxin B-saporin as a model. J Neurosci Meth 103:83–90

    CAS  Google Scholar 

  124. Luppi PH, Fort P, Jouvet M (1990) Iontophoretic application of unconjugated choleratoxin B subunit (CTB) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Res 534:209–224

    CAS  PubMed  Google Scholar 

  125. Lyckman AW, Fan G, Rios M, Jaenisch R, Sur M (2005) Normal eye-specific patterning of retinal inputs to murine subcortical visual nuclei in the absence of brain-derived neurotrophic factor. Vis Neurosci 22:27–36

    PubMed  Google Scholar 

  126. Marchi V, Algeri EG (1886) Sulle degenerazioni discendenti consecutive a lesioni in diverse zone della corteccia cerebrale. Riv Sper Freniatr Med Leg Alien Ment 14:1–49

    Google Scholar 

  127. Matesz C (1994) Synaptic relations of the trigeminal motoneurons in a frog (Rana esculenta). Eur J Morphol 32:117–121

    CAS  PubMed  Google Scholar 

  128. Mauro A, Germano I, Giaccone G et al (1985) 1-Naphthol basic dye (1-NBD), an alternative to diaminobenzidine (DAB) in immunoperoxidase techniques. Histochemistry 83:97–102

    CAS  PubMed  Google Scholar 

  129. Meissirel C, Dehay C, Berland M, Kennedy H (1991) Segregation of callosal and association pathways during development in the visual cortex of the primate. J Neurosci 11:3297–3316

    CAS  PubMed  Google Scholar 

  130. Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    CAS  PubMed  Google Scholar 

  131. Mesulam MM, Mufson EJ (1980) The rapid anterograde transport of horseradish peroxidase. Neuroscience 5:1277–1286

    CAS  PubMed  Google Scholar 

  132. Mesulam MM (1982) Principles of horseradish peroxidase neurochemistry and their applications for tracing neural pathways-axonal transport, enzyme histochemistry and light microscopic analysis. In: Mesulam MM (ed) Tracing neural connections with horseradish peroxidase; IBRO handbook series: methods in the neurosciences. Wiley, NY, USA, pp 1–551

    Google Scholar 

  133. Moore RY (1978) Surgical and chemical lesion techniques. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 9. Plenum, New York, pp 1–39

    Google Scholar 

  134. Morecraft RJ, Herrick JL, Stilwell-Morecraft KS et al (2002) Localization of arm representation in the corona radiata and internal capsule in the non-human primate. Brain 125:176–198

    PubMed  Google Scholar 

  135. Mufson EJ, Brady DR, Kordower JH (1990) Tracing neuronal connections in postmortem human hippocampal complex with the carbocyanine dye DiI. Neurobiol Aging 11:649–653

    CAS  PubMed  Google Scholar 

  136. Nance DM, Burns J (1990) Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: applications and pitfalls. Brain Res Bull 25:139–145

    CAS  PubMed  Google Scholar 

  137. Nauta WJ (1952) Selective silver impregnation of degenerating axons in the central nervous system. Stain Technol 27:175–179

    CAS  PubMed  Google Scholar 

  138. Neely MD, Stanwood GD, Deutch AY (2009) Combination of diOlistic labeling with retrograde tract tracing and immunohistochemistry. J Neurosci Meth 184:332–336

    Google Scholar 

  139. Oishi K, Zilles K, Amunts K et al (2008) Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage 43:447–457

    PubMed Central  PubMed  Google Scholar 

  140. Oztas E (2003) Neuronal tracing. Neuroanatomy 2:2–5

    Google Scholar 

  141. Parent M, Parent A (2007) The microcircuitry of primate subthalamic nucleus. Parkinsonism Relat Disord 13(Suppl 3):S292–S295

    PubMed  Google Scholar 

  142. Payne JN (1987) Comparisons between the use of true blue and diamidino yellow as retrograde fluorescent tracers. Exp Brain Res 68:631–642

    CAS  PubMed  Google Scholar 

  143. Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J Neurosci Meth 65:113–136

    CAS  Google Scholar 

  144. Pitman RM, Tweedle CD, Cohen MJ (1972) Branching of central neurons; intracellular cobalt injection for light and electron-microscopy. Science 176:412–414

    CAS  PubMed  Google Scholar 

  145. Porrero C, Rubio-Garrido P, Avendaño C, Clascá F (2010) Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice. Brain Res 1345:59–72

    CAS  PubMed  Google Scholar 

  146. Prensa L, Parent A (2001) The nigrostriatal pathway in the rat: a single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J Neurosci 21:7247–7260

    CAS  PubMed  Google Scholar 

  147. Ramón y Cajal S (1909–1911) Histologie du Système Nerveux de l’Homme et des Vertébrés 2 volumes. Maloine, Paris, facsimile reprint, 1972

    Google Scholar 

  148. Reiner A, Honig MG (2006) Dextran amines: versatile tools for anterograde and retrograde studies of nervous system connectivity. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract-tracing 3: molecules, neurons, and systems. Springer, New York, pp 304–335

    Google Scholar 

  149. Reiner A, Veenman CL, Honig MG (1993) Anterograde tracing using biotinylated dextran amine. Neurosci Protoc 93-050-14

    Google Scholar 

  150. Reiner A, Veenman CL, Medina L et al (2000) Pathway tracing using biotinylated dextran amines. J Neurosci Meth 103:23–37

    CAS  Google Scholar 

  151. Repérant J (1975) The orthograde transport of horseradish peroxidase in the visual system. Brain Res 85:307–312

    PubMed  Google Scholar 

  152. Reyes BA, Carvalho AF, Vakharia K, Van Bockstaele EJ (2011) Amygdalar peptidergic circuits regulating noradrenergic locus coeruleus neurons: linking limbic and arousal centers. Exp Neurol 230:96–105

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Rho JH, Sidman RL (1986) Intracellular injection of lucifer yellow into lightly fixed cerebellar neurons. Neurosci Lett 72:21–24

    CAS  PubMed  Google Scholar 

  154. Rice CD, Weber SA, Waggoner AL et al (2010) Mapping of neural pathways that influence diaphragm activity and project to the lumbar spinal cord in cats. Exp Brain Res 203:205–211

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Richmond FJ, Gladdy R, Creasy JL et al (1994) Efficacy of seven retrograde tracers, compared in multiple-labelling studies of feline motoneurones. J Neurosci Meth 53:35–46

    CAS  Google Scholar 

  156. Rooney D, Døving KB, Ravaille-Veron M, Szabo T (1992) The central connections of the olfactory bulbs in cod, Gadus morhua L. J Hirnforsch 33:63–75

    CAS  PubMed  Google Scholar 

  157. Rosene DL, Roy NJ, Davis BJ (1986) A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. J Histochem Cytochem 34:1301–1315

    CAS  PubMed  Google Scholar 

  158. Roy I, Ohulchanskyy TY, Pudavar HE et al (2003) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc 125:7860–7865

    CAS  PubMed  Google Scholar 

  159. Ruigrok TJ, Hensbroek RA, Simpson JI (2011) Spontaneous activity signatures of morphologically identified interneurons in the vestibulocerebellum. J Neurosci 31:712–724

    CAS  PubMed  Google Scholar 

  160. Schmued LC, Fallon JH (1986) Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res 377:147–154

    CAS  PubMed  Google Scholar 

  161. Schmued LC, Heimer L (1990) Iontophoretic injection of Fluoro-Gold and other fluorescent tracers. J Histochem Cytochem 38:721–723

    CAS  PubMed  Google Scholar 

  162. Schmued L, Kyriakidis K, Heimer L (1990) In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, Fluoro-Ruby, within the CNS. Brain Res 526:127–134

    CAS  PubMed  Google Scholar 

  163. Schwab ME, Javoy-Agid F, Agid Y (1978) Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat hippocampal system. Brain Res 152:145–150

    CAS  PubMed  Google Scholar 

  164. Schwab ME, Agid I (1979) Labeled wheat germ agglutinin and tetanus toxin as highly sensitive retrograde tracers in the CNS: the afferent fiber connections of the rat nucleus accumbens. Int J Neurol 13:117–126

    CAS  PubMed  Google Scholar 

  165. Schwartz JH (1979) Axonal transport: components, mechanisms and specificity. Annu Rev Neurosci 2:467–504

    CAS  PubMed  Google Scholar 

  166. Skirboll L, Hökfelt T, Norell G et al (1984) A method for specific transmitter identification of retrogradely labeled neurons: immunofluorescence combined with fluorescence tracing. Brain Res Rev 8:99–127

    CAS  Google Scholar 

  167. Skirboll LR, Thor K, Helke C et al (1989) Use of retrograde fluorescent tracers in combination with immunohistochemical methods. In: Záborszky L, Heimer L (eds) Neuroanatomical tract-tracing methods 2. Plenum Press, London, pp 5–8

    Google Scholar 

  168. Somogyi P, Smith AD (1979) Projection of neostriatal spiny neurons to the substantia nigra. Application of a combined Golgi-staining and horseradish peroxidase transport procedure at both light and electron microscopic levels. Brain Res 178:3–15

    CAS  PubMed  Google Scholar 

  169. Somogyi P, Hodgson AJ, Smith AD (1979) An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of Golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material. Neuroscience 4:1805–1852

    CAS  PubMed  Google Scholar 

  170. Somogyi P, Freund TF, Hodgson AJ et al (1985) Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of the cat. Brain Res 332:143–149

    CAS  PubMed  Google Scholar 

  171. Spiga S, Puddu MC, Pisano M, Diana M (2005) Morphine withdrawal-induced morphological changes in the nucleus accumbens. Eur J Neurosci 22:2332–2340

    PubMed  Google Scholar 

  172. Stretton AO, Kravitz EA (1968) Neuronal geometry: determination with a technique of intracellular dye injection. Science 162:132–134

    CAS  PubMed  Google Scholar 

  173. Swanson LW (1981) Tracing central pathways with the autoradiographic method. J Histochem Cytochem 29:117–124

    CAS  PubMed  Google Scholar 

  174. Szabadics J, Varga C, Brunner J et al (2010) Granule cells in the CA3 area. J Neurosci 30:8296–8307

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Taverna S, van Dongen YC, Groenewegen HJ, Pennartz CM (2004) Direct physiological evidence for synaptic connectivity between medium-sized spiny neurons in rat nucleus accumbens in situ. J Neurophysiol 91:1111–1121

    PubMed  Google Scholar 

  176. Thanos S, Bonhoeffer F (1983) Investigations on the development and topographic order of retinotectal axons: anterograde and retrograde staining of axons and perikarya with rhodamine in vivo. J Comp Neurol 219:420–430

    CAS  PubMed  Google Scholar 

  177. Thomas MA, Lemmer B (2005) HistoGreen: a new alternative to 3.3’-diaminobenzidine-tetrahydrochloride-dihydrate (DAB) as a peroxidase substrate in immunohistochemistry? Brain Res Protcol 14:107–118

    CAS  Google Scholar 

  178. Tóth P, Lázár G, Wang SR et al (1994) The contralaterally projecting neurons of the isthmic nucleus in five anuran species: a retrograde tracing study with HRP and cobalt. J Comp Neurol 346:306–320

    PubMed  Google Scholar 

  179. Trojanowski JQ (1983) Native and derivatized lectins for in vivo studies of neuronal connectivity and neuronal cell biology. J Neurosci Meth 9:185–204

    CAS  Google Scholar 

  180. Trojanowski JQ, Gonatas JO, Gonatas NK (1981) Conjugates of horseradish peroxidase (HRP) with cholera toxin and wheat germ agglutinin are superior to free HRP as orthograde transported markers. Brain Res 223:381–385

    CAS  PubMed  Google Scholar 

  181. Trojanowski JQ, Gonatas JO, Steiber A, Gonatas NK (1982) Horseradish peroxidase (HRP) conjugates of cholera toxin and lectins are more sensitive retrograde transported markers than free HRP. Brain Res 231:33–50

    CAS  PubMed  Google Scholar 

  182. Van Bockstaele EJ, Wright AM, Cestari DM, Pickel VM (1994) Immunolabeling of retrogradely transported Fluoro-Gold: sensitivity and application to ultrastructural analysis of transmitter-specific mesolimbic circuitry. J Neurosci Meth 55:65–78

    Google Scholar 

  183. Van der Kooy D, Steinbusch HWM (1980) Simultaneous fluorescent retrograde axonal tracing and immunofluorescent characterization of neurons. J Neurosci Res 5:479–484

    PubMed  Google Scholar 

  184. VanderWerf F, Aramideh M, Ongerboer de Visser BW et al (1997) A retrograde double fluorescent tracing study of the levator palpebrae superioris in the cynomolgus monkey. Exp Brain Res 113:174–179

    CAS  PubMed  Google Scholar 

  185. van Haeften T, Baks-te-Bulte L, Goede P et al (2003) Morphological and numerical analysis of synaptic interactions between neurons in the deep and superficial layers of the entorhinal cortex of the rat. Hippocampus 13:943–952

    PubMed  Google Scholar 

  186. Veenman CL, Reiner A, Honig MG (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-label studies. J Neurosci Meth 41:239–254

    CAS  Google Scholar 

  187. Vertes RP, Hoover WB, Do Valle AC et al (2006) Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499:768–796

    PubMed  Google Scholar 

  188. von Bartheld CS, Cunningham DE, Rubel EW (1990) Neuronal tracing with DiI: decalcification, cryosectioning, and photoconversion for light and electron microscopic analysis. J Histochem Cytochem 38:725–733

    Google Scholar 

  189. von Waldeyer-Hartz HWG (1891) Ueber einige neuere Forschungen im Gebiete der Anatomie des Centralnervensystems. Deutsch Med Wochenschr Berlin 17:1213–1218, 1244–1246, 1287–1289, 1331–1332, 1350–1356

    Google Scholar 

  190. Walaas I, Fonnum F (1979) The effects of surgical and chemical lesions on neurotransmitter candidates in the nucleus accumbens of the rat. Neuroscience 4:209–316

    CAS  PubMed  Google Scholar 

  191. Waller A (1850) Experiments on the sections of glossopharyngeal and hypoglossal nerves of the frog and observations of the alterations produced thereby in the structure of their primitive fibers. Phil Trans R Soc Lond 140:423–429

    Google Scholar 

  192. Wan XS, Trojanowski JQ, Gonatas JO (1982) Cholera toxin and wheat germ agglutinin conjugates as neuroanatomical probes: their uptake and clearance, transganglionic and retrograde transport and sensitivity. Brain Res 243:215–224

    CAS  PubMed  Google Scholar 

  193. Warr WB, de Olmos JS, Heimer L (1981) Horseradish peroxidase: the basic procedure. In: Heimer L, RoBards M (eds) Neuroanatomical tract-tracing methods. Plenum, New York, pp 207–262

    Google Scholar 

  194. Weiss P, Hiscoe HN (1948) Experiments on the mechanism of nerve growth. J Exp Zool 107:315–339

    CAS  PubMed  Google Scholar 

  195. Wessendorf MW (1990) Characterization and use of multi-color fluorescence microscopic techniques. In: Björklund A, Hökfelt T, Wouterlood FG, van der Pol AN (eds) Handbook of chemical neuroanatomy, vol 8. Elsevier, Amsterdam, pp 1–45

    Google Scholar 

  196. Wessendorf MW (1990) Fluoro-Gold: composition, and mechanism of uptake. Brain Res 553:135–148

    Google Scholar 

  197. Wouterlood FG (1986) Study of CNS microcircuits by a combination of Phaseolus vulgaris-leucoagglutinin (PHA L) tracing, anterograde degeneration and electron microscopy: target neurons of fornix terminals in the septum of the rat. Neurosci Lett Suppl 26:S603

    Google Scholar 

  198. Wouterlood FG (1992) Techniques for converting Golgi precipitate in CNS neurons into stable electron microscopic markers. Microsc Res Tech 23:275–288

    CAS  PubMed  Google Scholar 

  199. Wouterlood FG (2006) Combined fluorescence methods to determine synapses in the light microscope: multilabel confocal laser scanning microscopy. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract-tracing 3: molecules – neurons systems. Springer, New York, pp 394–435

    Google Scholar 

  200. Wouterlood FG, Nederlof J (1983) Termination of olfactory afferents on layer II and III pyramidal cells in the entorhinal area: degeneration Golgi EM study in the rat. Neurosci Lett 36(105):110

    Google Scholar 

  201. Wouterlood FG, Mugnaini E (1984) Cartwheel neurons of the dorsal cochlear nucleus. A Golgi electron microscopic study in the rat. J Comp Neurol 227:136–157

    CAS  PubMed  Google Scholar 

  202. Wouterlood FG, Groenewegen HJ (1985) Neuroanatomical tracing by use of Phaseolus vulgaris-leucoagglutinin (PHA -L): electron microscopy of PHA L filled neuronal somata, dendrites, axons and axon terminals. Brain Res 326:188–191

    CAS  PubMed  Google Scholar 

  203. Wouterlood FG, Bol JGJM, Steinbusch HWM (1987) Double- label immunocytochemistry: combination of anterograde neuroanatomical tracing with Phaseolus vulgaris-leucoagglutinin and enzyme immunocytochemistry of target neurons. J Histochem Cytochem 35:817–823

    CAS  PubMed  Google Scholar 

  204. Wouterlood FG, Sauren YMHF, Pattiselanno A (1988) Compromises between penetration of antisera and preservation of ultrastructure in pre embedding electron microscopic immunocytochemistry. J Chem Neuroanat 1:65–80

    CAS  PubMed  Google Scholar 

  205. Wouterlood FG, Saldana E, Witter MP (1990) Projection from the nucleus reuniens thalami to the hippocampal region: light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 296:589–610

    Google Scholar 

  206. Wouterlood FG, Jorritsma-Byham B, Goede PH (1990) Combination of anterograde tracing with Phaseolus vulgaris-leucoagglutinin, retrograde fluorescent tracing and fixed-slice intracellular injection of lucifer yellow. J Neurosci Meth 33:207–217

    CAS  Google Scholar 

  207. Wouterlood FG, Groenewegen HJ (1991) The Phaseolus vulgaris-leucoagglutinin tracing technique for the study of neuronal connections. Progr Histochem Cytochem 22:1–78

    CAS  Google Scholar 

  208. Wouterlood FG, Goede PH, Arts MPM, Groenewegen HJ (1992) Simultaneous characterization of efferent and afferent connectivity, neuroactive substances and morphology of neurons. J Histochem Cytochem 40:457–465

    CAS  PubMed  Google Scholar 

  209. Wouterlood FG, Jorritsma-Byham B (1993) The anterograde neuroanatomical tracer biotinylated dextran amine: comparison with the tracer PHA-L in preparations for electron microscopy. J Neurosci Meth 48:75–87

    CAS  Google Scholar 

  210. Wouterlood FG, Böckers T, Witter MP (2003) Synaptic contacts between identified neurons visualized in the confocal laser scanning microscope. Neuroanatomical tracing combined with immunofluorescence detection of post-synaptic density proteins and target neuron-markers. J Neurosci Meth 128:129–142

    CAS  Google Scholar 

  211. Wouterlood FG, van Haeften T, Eijkhoudt M et al (2004) Input from the presubiculum to dendrites of layer-V neurons of the medial entorhinal cortex of the rat. Brain Res 1013:1–12

    CAS  PubMed  Google Scholar 

  212. Wouterlood FG, Boekel AJ, Meijer GA, Beliën JAM (2007) Computer assisted estimation in the CNS of 3D multimarker overlap or touch at the level of individual nerve endings. A confocal laser scanning microscope application. J Neurosci Res 85:1215–1228

    CAS  PubMed  Google Scholar 

  213. Wouterlood FG, Boekel AJ, Kajiwara R, Beliën JAM (2008) Counting contacts between neurons in 3D in confocal laser scanning images. J Neurosci Meth 171:296–308

    Google Scholar 

  214. Wouterlood FG, Aliane V, Boekel AJ et al (2008) Origin of calretinin containing, vesicular glutamate transporter 2- coexpressing fiber terminals in the entorhinal cortex of the rat. J Comp Neurol 506:359–370

    CAS  PubMed  Google Scholar 

  215. Wouterlood FG, Beliën JAM (2014) Translation, touch and overlap in multi-fluorescence confocal laser scanning microscopy to quantitate synaptic connectivity. In: Bakota L, Brandt R (eds) Laser scanning microscopy and quantitative image analysis of neuronal tissue, Neuromethods 87. Humana, New York, NY, pp 1–36

    Google Scholar 

  216. Wright AK, Norrie L, Ingham CA, Hutton EA, Arbuthnott GW (1999) Double anterograde tracing of outputs from adjacent "barrel columns" of rat somatosensory cortex. Neostriatal projection patterns and terminal ultrastructure. Neuroscience 88:119–133

    CAS  PubMed  Google Scholar 

  217. Wu Y, Richard S, Parent A (2000) The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neurosci Res 38:49–62

    CAS  PubMed  Google Scholar 

  218. Xue R, van Zijl PC, Crain BJ et al (1999) In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 42:1123–1127

    CAS  PubMed  Google Scholar 

  219. Záborszky L, Heimer L (1989) Combination of tracer techniques, especially HRP and PHA-L, with transmitter identification for correlated light and electron microscopic studies. In: Heimer L, Záborszky L (eds) Neuroanatomical tract tracing methods 2. Plenum Press, New York, Recent Progress, pp 49–96

    Google Scholar 

  220. Zhang DX, Bertram EH (2002) Midline thalamic region: widespread excitatory input to the entorhinal cortex and amygdala. J Neurosci 22:3277–3284

    CAS  PubMed  Google Scholar 

  221. Zhang J, Zhang AJ, Wu SM (2006) Immunocytochemical analysis of GABA-positive and calretinin-positive horizontal cells in the tiger salamander retina. J Comp Neurol 499:432–441

    PubMed  Google Scholar 

  222. Zhou M, Grofova I (1995) The use of peroxidase substrate Vector VIP in electron microscopic single and double antigen localization. J Neurosci Meth 62:149–158

    CAS  Google Scholar 

Download references

Acknowledgments

It is a pleasure to acknowledge the continuous support provided by technicians who skillfully assisted us: Barbara Jorritsma-Byham, Annaatje Pattiselanno, Peter Goede, Amber Boekel, John Bol, Eveline Timmermans, Luciënne Baks-te Bulte, Yvon Galis, and Angela Engel. Their professional attitude, skill, and enthusiasm made the day. I am also indebted to many colleagues who at some point gave advice and contributed ideas and improvements, to name a few, Jochen Staiger, José Lanciego, Riichi Kajiwara, and Jean-Luc Boulland. It should be mentioned that a score of graduate students assisted in various projects. Finally, computer and other digital assistance by Nico Blijleven and Jeroen Beliën were of vital support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floris G. Wouterlood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wouterlood, F.G. (2015). A Survey of Current Neuroanatomical Tracing Techniques. In: Arenkiel, B. (eds) Neural Tracing Methods. Neuromethods, vol 92. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1963-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1963-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1962-8

  • Online ISBN: 978-1-4939-1963-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics