Skip to main content

Modification Interference Analysis of the Ribosome

  • Protocol
  • First Online:
RNA-RNA Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1240))

Abstract

RNAs are versatile molecules involved in myriad functions in the cell. To understand how a RNA molecule functions in the cell it is important to identify the nucleotides in the RNA molecule that are important for its structure and function. There are several biochemical methods such as footprinting, cross-linking, and modification interference analysis that can be used to study RNA–RNA and RNA–protein interactions. Ribosome is a classical example of a RNA–protein complex that has been extensively studied using these methods. Here, we describe a modification interference method that was used to identify bases in 16S rRNA that are important for the translocation of the mRNA–tRNA complex by the ribosome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghosh S, Joseph S (2005) Nonbridging phosphate oxygens in 16S rRNA important for 30S subunit assembly and association with the 50S ribosomal subunit. RNA 11(5):657–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Herr W, Chapman NM, Noller HF (1979) Mechanism of ribosomal subunit association: discrimination of specific sites in 16 S RNA essential for association activity. J Mol Biol 130(4):433–449

    Article  CAS  PubMed  Google Scholar 

  3. Maivali U, Remme J (2004) Definition of bases in 23S rRNA essential for ribosomal subunit association. RNA 10(4):600–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. von Ahsen U, Noller HF (1995) Identification of bases in 16S rRNA essential for tRNA binding at the 30S ribosomal P site. Science 267(5195):234–237

    Article  Google Scholar 

  5. Yoshizawa S, Fourmy D, Puglisi JD (1999) Recognition of the codon-anticodon helix by ribosomal RNA. Science 285(5434):1722–1725

    Article  CAS  PubMed  Google Scholar 

  6. Bocchetta M, Xiong L, Mankin AS (1998) 23S rRNA positions essential for tRNA binding in ribosomal functional sites. Proc Natl Acad Sci U S A 95(7):3525–3530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bocchetta M, Xiong L, Shah S, Mankin AS (2001) Interactions between 23S rRNA and tRNA in the ribosomal E site. RNA 7(1):54–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Shi X, Chiu K, Ghosh S, Joseph S (2009) Bases in 16S rRNA important for subunit association, tRNA binding, and translocation. Biochemistry 48(29):6772–6782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Frank J Jr, Gonzalez RL (2010) Structure and dynamics of a processive Brownian motor: the translating ribosome. Annu Rev Biochem 79:381–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Schwartz I, Ofengand J (1978) Photochemical cross-linking of unmodified acetylvalyl-tRNA to 16S RNA at the ribosomal P site. Biochemistry 17(13):2524–2530

    Article  CAS  PubMed  Google Scholar 

  11. Ofengand J, Liou R, Jd K, Schwartz I, Zimmermann RA (1979) Covalent cross-linking of transfer ribonucleic acid to the ribosomal P site. Mechanism and site of reaction in transfer ribonucleic acid. Biochemistry 18(20):4322–4332

    Article  CAS  PubMed  Google Scholar 

  12. Powers T, Noller HF (1991) A functional pseudoknot in 16S ribosomal RNA. EMBO J 10(8):2203–2214

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Feinberg JS, Joseph S (2006) Ribose 2'-hydroxyl groups in the 5' strand of the acceptor arm of P-site tRNA are not essential for EF-G catalyzed translocation. RNA 12(4):580–588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Stern S, Moazed D, Noller HF (1988) Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol 164(481):481–489

    Article  CAS  PubMed  Google Scholar 

  15. Merryman C, Noller HF (1998) Footprinting and modification-interference analysis of binding sites on RNA. In: Smith CWJ (ed) RNA: protein interaction. Oxford University Press, New York, pp 237–253

    Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the National Institutes of Health (GM65265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simpson Joseph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Joseph, S. (2015). Modification Interference Analysis of the Ribosome. In: Schmidt, F. (eds) RNA-RNA Interactions. Methods in Molecular Biology, vol 1240. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1896-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1896-6_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1895-9

  • Online ISBN: 978-1-4939-1896-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics