Skip to main content

Native Purification and Labeling of RNA for Single Molecule Fluorescence Studies

  • Protocol
  • First Online:
RNA-RNA Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1240))

Abstract

The recent discovery that non-coding RNAs are considerably more abundant and serve a much wider range of critical cellular functions than recognized over previous decades of research into molecular biology has sparked a renewed interest in the study of structure–function relationships of RNA. To perform their functions in the cell, RNAs must dominantly adopt their native conformations, avoiding deep, non-productive kinetic traps that may exist along a frustrated (rugged) folding free energy landscape. Intracellularly, RNAs are synthesized by RNA polymerase and fold co-transcriptionally starting from the 5′ end, sometimes with the aid of protein chaperones. By contrast, in the laboratory RNAs are commonly generated by in vitro transcription or chemical synthesis, followed by purification in a manner that includes the use of high concentrations of urea, heat and UV light (for detection), resulting in the denaturation and subsequent refolding of the entire RNA. Recent studies into the nature of heterogeneous RNA populations resulting from this process have underscored the need for non-denaturing (native) purification methods that maintain the co-transcriptional fold of an RNA. Here, we present protocols for the native purification of an RNA after its in vitro transcription and for fluorophore and biotin labeling methods designed to preserve its native conformation for use in single molecule fluorescence resonance energy transfer (smFRET) inquiries into its structure and function. Finally, we present methods for taking smFRET data and for analyzing them, as well as a description of plausible overall preparation schemes for the plethora of non-coding RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amaral PP, Dinger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319:1787–1789

    Article  CAS  PubMed  Google Scholar 

  2. Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334

    Article  CAS  PubMed  Google Scholar 

  3. Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10:141–148

    Article  CAS  PubMed  Google Scholar 

  4. Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718

    Article  CAS  PubMed  Google Scholar 

  5. Steitz TA, Moore PB (2003) RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci 28:411–418

    Article  CAS  PubMed  Google Scholar 

  6. Collins K (2006) The biogenesis and regulation of telomerase holoenzymes. Nat Rev Mol Cell Biol 7:484–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Al-Hashimi HM, Walter NG (2008) RNA dynamics: it is about time. Curr Opin Struct Biol 18:321–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Deigan KE, Ferre-D'Amare AR (2011) Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Acc Chem Res 44:1329–1338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Serganov A, Huang L, Patel DJ (2008) Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 455:1263–1267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Stoddard CD, Montange RK, Hennelly SP, Rambo RP, Sanbonmatsu KY, Batey RT (2010) Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure 18:787–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Vicens Q, Mondragon E, Batey RT (2011) Molecular sensing by the aptamer domain of the FMN riboswitch: a general model for ligand binding by conformational selection. Nucleic Acids Res 39:8586–8598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Haller A, Rieder U, Aigner M, Blanchard SC, Micura R (2011) Conformational capture of the SAM-II riboswitch. Nat Chem Biol 7:393–400

    Article  CAS  PubMed  Google Scholar 

  13. Jenkins JL, Krucinska J, McCarty RM, Bandarian V, Wedekind JE (2011) Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J Biol Chem 286:24626–24637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Santner T, Rieder U, Kreutz C, Micura R (2012) Pseudoknot Preorganization of the PreQ(1) Class I Riboswitch. J Am Chem Soc 134:11928–11931

    Article  CAS  PubMed  Google Scholar 

  15. Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wong TN, Sosnick TR, Pan T (2007) Folding of noncoding RNAs during transcription facilitated by pausing-induced nonnative structures. Proc Natl Acad Sci U S A 104:17995–18000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bhaskaran H, Russell R (2007) Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 449:1014–1018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Russell R (2008) RNA misfolding and the action of chaperones. Front Biosci 13:1–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Uhlenbeck OC (1995) Keeping RNA happy. RNA 1:4–6

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Pereira MJ, Behera V, Walter NG (2010) Nondenaturing purification of co-transcriptionally folded RNA avoids common folding heterogeneity. PLoS One 5:e12953

    Article  PubMed Central  PubMed  Google Scholar 

  21. Marek MS, Johnson-Buck A, Walter NG (2011) The shape-shifting quasispecies of RNA: one sequence, many functional folds. Phys Chem Chem Phys 13:11524–11537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Walter NG, Huang CY, Manzo AJ, Sobhy MA (2008) Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat Methods 5:475–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Pljevaljcic G, Robertson-Anderson R, van der Schans E, Millar D (2012) Analysis of RNA folding and ribonucleoprotein assembly by single-molecule fluorescence spectroscopy. Methods Mol Biol 875:271–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ditzler MA, Rueda D, Mo J, Hakansson K, Walter NG (2008) A rugged free energy landscape separates multiple functional RNA folds throughout denaturation. Nucleic Acids Res 36:7088–7099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Steiner M, Karunatilaka KS, Sigel RK, Rueda D (2008) Single-molecule studies of group II intron ribozymes. Proc Natl Acad Sci U S A 105:13853–13858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Bokinsky G, Rueda D, Misra VK, Rhodes MM, Gordus A, Babcock HP, Walter NG, Zhuang X (2003) Single-molecule transition-state analysis of RNA folding. Proc Natl Acad Sci U S A 100:9302–9307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Liu S, Bokinsky G, Walter NG, Zhuang X (2007) Dissecting the multistep reaction pathway of an RNA enzyme by single-molecule kinetic "fingerprinting". Proc Natl Acad Sci U S A 104:12634–12639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rueda D, Bokinsky G, Rhodes MM, Rust MJ, Zhuang X, Walter NG (2004) Single-molecule enzymology of RNA: essential functional groups impact catalysis from a distance. Proc Natl Acad Sci U S A 101:10066–10071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Zhuang X, Kim H, Pereira MJ, Babcock HP, Walter NG, Chu S (2002) Correlating structural dynamics and function in single ribozyme molecules. Science 296:1473–1476

    Article  CAS  PubMed  Google Scholar 

  31. Pereira MJ, Nikolova EN, Hiley SL, Jaikaran D, Collins RA, Walter NG (2008) Single VS ribozyme molecules reveal dynamic and hierarchical folding toward catalysis. J Mol Biol 382:496–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. de Silva C, Walter NG (2009) Leakage and slow allostery limit performance of single drug-sensing aptazyme molecules based on the hammerhead ribozyme. RNA 15:76–84

    Article  PubMed Central  PubMed  Google Scholar 

  33. McDowell SE, Jun JM, Walter NG (2010) Long-range tertiary interactions in single hammerhead ribozymes bias motional sampling toward catalytically active conformations. RNA 16:2414–2426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lemay JF, Penedo JC, Tremblay R, Lilley DM, Lafontaine DA (2006) Folding of the adenine riboswitch. Chem Biol 13:857–868

    Article  CAS  PubMed  Google Scholar 

  35. Tremblay R, Lemay JF, Blouin S, Mulhbacher J, Bonneau E, Legault P, Dupont P, Penedo JC, Lafontaine DA (2011) Constitutive regulatory activity of an evolutionarily excluded riboswitch variant. J Biol Chem 286:27406–27415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wood S, Ferre-D'Amare AR, Rueda D (2012) Allosteric tertiary interactions preorganize the c-di-GMP riboswitch and accelerate ligand binding. ACS Chem Biol 7:920–927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Abelson J, Blanco M, Ditzler MA, Fuller F, Aravamudhan P, Wood M, Villa T, Ryan DE, Pleiss JA, Maeder C, Guthrie C, Walter NG (2010) Conformational dynamics of single pre-mRNA molecules during in vitro splicing. Nat Struct Mol Biol 17:504–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Mihalusova M, Wu JY, Zhuang X (2011) Functional importance of telomerase pseudoknot revealed by single-molecule analysis. Proc Natl Acad Sci U S A 108:20339–20344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hengesbach M, Kim NK, Feigon J, Stone MD (2012) Single-molecule FRET reveals the folding dynamics of the human telomerase RNA pseudoknot domain. Angew Chem Int Ed Engl 51:5876–5879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kieft JS, Batey RT (2004) A general method for rapid and nondenaturing purification of RNAs. RNA 10:988–995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Batey RT, Kieft JS (2007) Improved native affinity purification of RNA. RNA 13:1384–1389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Vicens Q, Gooding AR, Duarte LF, Batey RT (2009) Preparation of group I introns for biochemical studies and crystallization assays by native affinity purification. PLoS One 4:e6740

    Article  PubMed Central  PubMed  Google Scholar 

  43. Di Tomasso G, Lampron P, Dagenais P, Omichinski JG, Legault P (2011) The ARiBo tag: a reliable tool for affinity purification of RNAs under native conditions. Nucleic Acids Res 39:e18

    Article  PubMed Central  PubMed  Google Scholar 

  44. Cheong HK, Hwang E, Lee C, Choi BS, Cheong C (2004) Rapid preparation of RNA samples for NMR spectroscopy and X-ray crystallography. Nucleic Acids Res 32:e84

    Article  PubMed Central  PubMed  Google Scholar 

  45. Luo Y, Eldho NV, Sintim HO, Dayie TK (2011) RNAs synthesized using photocleavable biotinylated nucleotides have dramatically improved catalytic efficiency. Nucleic Acids Res 39:8559–8571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kim I, McKenna SA, Viani Puglisi E, Puglisi JD (2007) Rapid purification of RNAs using fast performance liquid chromatography (FPLC). RNA 13:289–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Easton LE, Shibata Y, Lukavsky PJ (2010) Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography. RNA 16:647–653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Paredes E, Evans M, Das SR (2011) RNA labeling, conjugation and ligation. Methods 54:251–259

    Article  CAS  PubMed  Google Scholar 

  49. Qin PZ, Pyle AM (1999) Site-specific labeling of RNA with fluorophores and other structural probes. Methods 18:60–70

    Article  CAS  PubMed  Google Scholar 

  50. Walter NG (2001) Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer. Methods 25:19–30

    Article  CAS  PubMed  Google Scholar 

  51. Walter NG (2003) Probing RNA structural dynamics and function by fluorescence resonance energy transfer (FRET). Curr Protoc Nucleic Acid Chem Chapter 11:Unit 11 10

    Google Scholar 

  52. Li N, Yu C, Huang F (2005) Novel cyanine-AMP conjugates for efficient 5' RNA fluorescent labeling by one-step transcription and replacement of [gamma-32P]ATP in RNA structural investigation. Nucleic Acids Res 33:e37

    Article  PubMed Central  PubMed  Google Scholar 

  53. Shu D, Zhang H, Jin J, Guo P (2007) Counting of six pRNAs of phi29 DNA-packaging motor with customized single-molecule dual-view system. EMBO J 26:527–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Paredes E, Das SR (2011) Click chemistry for rapid labeling and ligation of RNA. Chembiochem 12:125–131

    Article  CAS  PubMed  Google Scholar 

  55. Richardson RW, Gumport RI (1983) Biotin and fluorescent labeling of RNA using T4 RNA ligase. Nucleic Acids Res 11:6167–6184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Winz ML, Samanta A, Benzinger D, Jaschke A (2012) Site-specific terminal and internal labeling of RNA by poly(A) polymerase tailing and copper-catalyzed or copper-free strain-promoted click chemistry. Nucleic Acids Res 40:e78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Paredes E, Das SR (2012) Optimization of acetonitrile co-solvent and copper stoichiometry for pseudo-ligandless click chemistry with nucleic acids. Bioorg Med Chem Lett 22:5313–5316

    Article  CAS  PubMed  Google Scholar 

  58. Marshall RA, Dorywalska M, Puglisi JD (2008) Irreversible chemical steps control intersubunit dynamics during translation. Proc Natl Acad Sci U S A 105:15364–15369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Smith GJ, Sosnick TR, Scherer NF, Pan T (2005) Efficient fluorescence labeling of a large RNA through oligonucleotide hybridization. RNA 11:234–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Solomatin S, Herschlag D (2009) Methods of site-specific labeling of RNA with fluorescent dyes. Methods Enzymol 469:47–68

    Article  CAS  PubMed  Google Scholar 

  61. Greenfeld M, Solomatin SV, Herschlag D (2011) Removal of covalent heterogeneity reveals simple folding behavior for P4-P6 RNA. J Biol Chem 286:19872–19879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Nichols NM, Tabor S, McReynolds LA (2008) RNA ligases. Curr Protoc Mol Biol Chapter 3:Unit 3 15

    Google Scholar 

  63. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76

    Article  CAS  PubMed  Google Scholar 

  65. Axelrod D (2003) Total internal reflection fluorescence microscopy in cell biology. Methods Enzymol 361:1–33

    Article  CAS  PubMed  Google Scholar 

  66. Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169

    Article  CAS  PubMed  Google Scholar 

  67. Churchman LS, Okten Z, Rock RS, Dawson JF, Spudich JA (2005) Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci U S A 102:1419–1423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci U S A 103:18911–18916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157

    Article  CAS  PubMed  Google Scholar 

  70. Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic MN, Walter NG, Winfree E, Yan H (2010) Molecular robots guided by prescriptive landscapes. Nature 465:206–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Charvin G, Strick TR, Bensimon D, Croquette V (2005) Tracking topoisomerase activity at the single-molecule level. Annu Rev Biophys Biomol Struct 34:201–219

    Article  CAS  PubMed  Google Scholar 

  72. Ashkin A (1970) Acceleration and Trapping of Particles by Radiation Pressure. Phys Rev Lett 24:156–159

    Article  CAS  Google Scholar 

  73. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface Studies by Scanning Tunneling Microscopy. Phys Rev Lett 49:57–61

    Article  Google Scholar 

  74. Schuler B, Eaton WA (2008) Protein folding studied by single-molecule FRET. Curr Opin Struct Biol 18:16–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Bokinsky G, Zhuang X (2005) Single-molecule RNA folding. Acc Chem Res 38:566–573

    Article  CAS  PubMed  Google Scholar 

  76. Aleman EA, Lamichhane R, Rueda D (2008) Exploring RNA folding one molecule at a time. Curr Opin Chem Biol 12:647–654

    Article  CAS  PubMed  Google Scholar 

  77. Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94:1826–1835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3:891–893

    Article  CAS  PubMed  Google Scholar 

  79. Blanco M, Walter NG (2010) Analysis of complex single-molecule FRET time trajectories. Methods Enzymol 472:153–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. McKinney SA, Joo C, Ha T (2006) Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J 91:1941–1951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Bronson JE, Fei J, Hofman JM, Gonzalez RL Jr, Wiggins CH (2009) Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys J 97:3196–3205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Qin F, Li L (2004) Model-based fitting of single-channel dwell-time distributions. Biophys J 87:1657–1671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Spitale RC, Torelli AT, Krucinska J, Bandarian V, Wedekind JE (2009) The structural basis for recognition of the PreQ0 metabolite by an unusually small riboswitch aptamer domain. J Biol Chem 284:11012–11016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Suddala KC, Rinaldi AJ, Feng J, Mustoe AM, Eichhorn CD, Al-Hashimi HM, Brooks CL, Walter NG (2013) Single transcriptional and translational riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure. Nucleic Acids Res 41:10462–10475

    Google Scholar 

  85. He B, Rong M, Lyakhov D, Gartenstein H, Diaz G, Castagna R, McAllister WT, Durbin RK (1997) Rapid mutagenesis and purification of phage RNA polymerases. Protein Expr Purif 9:142–151

    Article  CAS  PubMed  Google Scholar 

  86. Martin G, Keller W (1998) Tailing and 3'-end labeling of RNA with yeast poly(A) polymerase and various nucleotides. RNA 4:226–230

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory was supported by the NIH grants RO1 GM062357, GM098023, and GM06316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils G. Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rinaldi, A.J., Suddala, K.C., Walter, N.G. (2015). Native Purification and Labeling of RNA for Single Molecule Fluorescence Studies. In: Schmidt, F. (eds) RNA-RNA Interactions. Methods in Molecular Biology, vol 1240. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1896-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1896-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1895-9

  • Online ISBN: 978-1-4939-1896-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics