Skip to main content

Fusion RNAs in Crystallographic Studies of Double-Stranded RNA from Trypanosome RNA Editing

  • Protocol
  • First Online:
RNA-RNA Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1240))

  • 2580 Accesses

Abstract

Head-to-head fusions of two identical double-stranded fragments of RNA can be designed to self-assemble from a single RNA species and form a double-stranded helix with a twofold rotation axis relating the two strands. These symmetrical RNA molecules are more likely to crystallize without end-on-end statistical packing disorder because the two halves of the molecule are identical. This approach can be used to study many fragments of double-stranded RNA or many isolated helical domains from large single-stranded RNAs that may not yet be amenable to high-resolution studies by crystallography or NMR. We used fusion RNAs to study one (the U-helix) of three functional domains formed when guide RNA binds to its cognate pre-edited mRNA from the trypanosome RNA editing system. The U-helix forms when the 3′ oligo(U) tail of the guide RNA (gRNA) binds to the purine-rich, pre-edited mRNA upstream from the current RNA editing site. Fusion RNAs 16-and 32-base pairs in length formed crystals that gave diffraction to 1.37 and 1.05 Å respectively. We provide the composition of a fusion RNA crystallization screen and describe the X-ray data collection, structure determination, and refinement of the crystal structures of fusion RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mueller U et al (1999) Disorder and twin refinement of RNA heptamer double helices. Acta Crystallogr D Biol Crystallogr 55:1405–1413

    CAS  PubMed  Google Scholar 

  2. Mooers BH, Singh A (2011) The crystal structure of an oligo(U):pre-mRNA duplex from a trypanosome RNA editing substrate. RNA 17:1870–1883

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Smyth DR et al (2003) Crystal structures of fusion proteins with large-affinity tags. Protein Sci 12:1313–1322

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Banatao DR et al (2006) An approach to crystallizing proteins by synthetic symmetrization. Proc Natl Acad Sci U S A 103:16230–16235

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Laganowsky A et al (2011) An approach to crystallizing proteins by metal-mediated synthetic symmetrization. Protein Sci 20:1876–1890

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Benne R et al (1986) Major transcript of the frameshift coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46:819–826

    CAS  PubMed  Google Scholar 

  7. Simpson L et al (2004) Mitochondrial proteins and complexes in Leishmania and Trypanosoma involved in U-insertion/deletion RNA editing. RNA 10:159–170

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Stuart KD et al (2005) Complex management: RNA editing in trypanosomes. Trends Biochem Sci 30:97–105

    CAS  PubMed  Google Scholar 

  9. Hajduk S, Ochsenreiter T (2010) RNA editing in kinetoplastids. RNA Biol 7:229–236

    CAS  PubMed  Google Scholar 

  10. Blum B, Simpson L (1990) Guide RNAs in kinetoplastid mitochondria have a nonencoded 3′ oligo(U) tail involved in recognition of the preedited region. Cell 62:391–397

    CAS  PubMed  Google Scholar 

  11. Leung SS, Koslowsky DJ (1999) Mapping contacts between gRNA and mRNA in trypanosome RNA editing. Nucleic Acids Res 27:778–787

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Leung SS, Koslowsky DJ (2001) Interactions of mRNAs and gRNAs involved in trypanosome mitochondrial RNA editing: structure probing of an mRNA bound to its cognate gRNA. RNA 7:1803–1816

    CAS  PubMed Central  PubMed  Google Scholar 

  13. McManus MT et al (2000) Trypanosoma brucei guide RNA poly(U) tail formation is stabilized by cognate mRNA. Mol Cell Biol 20:883–891

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Koslowsky DJ et al (2004) Evidence for U-tail stabilization of gRNA/mRNA interactions in kinetoplastid RNA editing. RNA Biol 1:28–34

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Holbrook SR, Holbrook EL, Walukiewicz HE (2001) Crystallization of RNA. Cell Mol Life Sci 58:234–243

    CAS  PubMed  Google Scholar 

  16. Masquida B et al (2007) RNA crystallogenesis. In: Sanderson MR, Skelly JV (eds) Macromolecular crystallography. Oxford University Press, Oxford, pp 201–216

    Google Scholar 

  17. Mooers BH (2009) Crystallographic studies of DNA and RNA. Methods 47:168–176

    CAS  PubMed  Google Scholar 

  18. Pikovskaya O et al (2009) Preparation and crystallization of riboswitch-ligand complexes. Methods Mol Biol 540:115–128

    CAS  PubMed  Google Scholar 

  19. Reyes FE, Garst AD, Batey RT (2009) Strategies in RNA crystallography. Methods Enzymol 469:119–139

    CAS  PubMed  Google Scholar 

  20. Lippa GM et al (2012) Crystallographic analysis of small ribozymes and riboswitches. Methods Mol Biol 848:159–184

    CAS  PubMed  Google Scholar 

  21. Doublie S (2007) Macromolecular crystallography protocols Volume 2: structure determination. In: Doublie S (ed) Methods in Molecular Biology, vol 364. Humana, Totowa, NJ, p 400

    Google Scholar 

  22. Scott WG et al (1995) Rapid crystallization of chemically synthesized hammerhead RNAs using a double screening procedure. J Mol Biol 250:327–332

    CAS  PubMed  Google Scholar 

  23. Hollis T (2007) Crystallization of protein-DNA complexes. Methods Mol Biol 363:225–237

    CAS  PubMed  Google Scholar 

  24. Baeyens KJ, Jancarik J, Holbrook SR (1994) Use of low-molecular-weight polyethylene glycol in the crystallization of RNA oligomers. Acta Crystallogr D Biol Crystallogr 50:764–767

    CAS  PubMed  Google Scholar 

  25. Doudna JA et al (1993) Crystallization of ribozymes and small RNA motifs by a sparse matrix approach. Proc Natl Acad Sci U S A 90:7829–7833

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Golden BL et al (1997) Crystals by design: a strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron. J Mol Biol 270:711–723

    CAS  PubMed  Google Scholar 

  27. Golden BL (2007) Preparation and crystallization of RNA. Methods Mol Biol 363:239–257

    CAS  PubMed  Google Scholar 

  28. Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66:125–132

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–327

    CAS  Google Scholar 

  30. Leslie AGW, Powell HR (2007) Processing diffraction data with mosflm. In: Read RJ, Sussman JL (eds) Evolving methods for macromolecular crystallography. Springer, New York, pp 41–51

    Google Scholar 

  31. Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62:72–82

    PubMed  Google Scholar 

  32. Winn M et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Vagin A, Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 66:22–25

    CAS  PubMed  Google Scholar 

  34. Emsley P et al (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Adams PD et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Adams PD et al (2011) The Phenix software for automated determination of macromolecular structures. Methods 55:94–106

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Lu XJ, Olson WK (2008) 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nucleic Acids Res 3:1213–1227

    CAS  Google Scholar 

  38. Lavery R et al (2009) Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res 37:5917–5929

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Seiwert SD, Stuart K (1994) RNA editing: transfer of genetic information from gRNA to precursor mRNA in vitro. Science 266:114–117

    CAS  PubMed  Google Scholar 

  40. Seiwert SD, Heidmann S, Stuart K (1996) Direct visualization of uridylate deletion in vitro suggests a mechanism for kinetoplastid RNA editing. Cell 84:831–841

    CAS  PubMed  Google Scholar 

  41. Woodson SA, Koculi E (2009) Analysis of RNA folding by native polyacrylamide gel electrophoresis. Methods Enzymol 469:189–208

    CAS  PubMed  Google Scholar 

  42. Beuning PJ et al (1999) Sequence-dependent conformational differences of small RNAs revealed by native gel electrophoresis. Anal Biochem 273:284–290

    CAS  PubMed  Google Scholar 

  43. McPherson A, Cudney B (2006) Searching for silver bullets: an alternative strategy for crystallizing macromolecules. J Struct Biol 156:387–406

    CAS  PubMed  Google Scholar 

  44. Jabafi I et al (2007) Improved crystallization of the coxsackievirus B3 RNA-dependent RNA polymerase. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:495–498

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Rubinson KA et al (2000) Cryosalts: suppression of ice formation in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 56:996–1001

    CAS  PubMed  Google Scholar 

  46. Alcorn T, Juers DH (2010) Progress in rational methods of cryoprotection in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:366–373

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Garman EF, Owen RL (2006) Cryocooling and radiation damage in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 62:32–47

    PubMed  Google Scholar 

  48. Dauter Z (1999) Data-collection strategies. Acta Crystallogr D Biol Crystallogr 55:1703–1717

    CAS  PubMed  Google Scholar 

  49. Brunger AT (1997) Free R value: cross-validation in crystallography. Methods Enzymol 277:366–396

    CAS  PubMed  Google Scholar 

  50. Spitale RC, Wedekind JE (2009) Exploring ribozyme conformational changes with X-ray crystallography. Methods 49:87–100

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Weichenberger, CX, Rupp, B (2014) Ten years of probabilistic estimates of biocrystal solvent content: new insights via nonparametric kernel density estimate. Acta Crystallogr D Biol Crystallogr 70:1579–1588

    Google Scholar 

  52. Klosterman PS, Shah SA, Steitz TA (1999) Crystal structures of two plasmid copy control related RNA duplexes: an 18 base pair duplex at 1.20 A resolution and a 19 base pair duplex at 1.55 A resolution. Biochemistry 38:14784–14792

    CAS  PubMed  Google Scholar 

  53. Pavelcik F, Schneider B (2008) Building of RNA and DNA double helices into electron density. Acta Crystallogr D Biol Crystallogr 64:620–626

    CAS  PubMed  Google Scholar 

  54. Robertson MP, Chi YI, Scott WG (2010) Solving novel RNA structures using only secondary structural fragments. Methods 52:168–172

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Gruene T, Sheldrick GM (2011) Geometric properties of nucleic acids with potential for autobuilding. Acta Crystallogr A 67:1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Pavelcik F (2012) Application of constrained real-space refinement of flexible molecular fragments to automatic model building of RNA structures. J Appl Crystallogr 45:309–315

    CAS  Google Scholar 

  57. Scott WG (2012) Challenges and surprises that arise with nucleic acids during model building and refinement. Acta Crystallogr D Biol Crystallogr 68:441–445

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Dibrov S, McLean J, Hermann T (2011) Structure of an RNA dimer of a regulatory element from human thymidylate synthase mRNA. Acta Crystallogr D Biol Crystallogr 67:97–104

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Burla MC et al (2012) SIR2011: a new package for crystal structure determination and refinement. J Appl Crystallogr 45:357–361

    CAS  Google Scholar 

  60. Golden BL (2000) Heavy atom derivatives of RNA. Methods Enzymol 317:124–132

    CAS  PubMed  Google Scholar 

  61. Correll CC et al (1997) Use of chemically modified nucleotides to determine a 62-nucleotide RNA crystal structure: a survey of phosphorothioates, Br, Pt and Hg. J Biomol Struct Dyn 15:165–172

    CAS  PubMed  Google Scholar 

  62. Irani RJ, SantaLucia J (1999) The synthesis of 5-iodocytidine phosphoramidite for heavy atom derivatization of RNA. Tetrahedron Lett 40:8961–8964

    CAS  Google Scholar 

  63. Ennifar E et al (2002) X-ray-induced debromination of nucleic acids at the Br K absorption edge and implications for MAD phasing. Acta Crystallogr D Biol Crystallogr 58:1262–1268

    CAS  PubMed  Google Scholar 

  64. Egli M, Pallan PS (2007) Insights from crystallographic studies into the structural and pairing properties of nucleic acid analogs and chemically modified DNA and RNA oligonucleotides. Annu Rev Biophys Biomol Struct 36:281–305

    CAS  PubMed  Google Scholar 

  65. Ennifar E et al (2007) Influence of C-5 halogenation of uridines on hairpin versus duplex RNA folding. RNA 13:1445–1452

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Hobartner C et al (2005) Syntheses of RNAs with up to 100 nucleotides containing site-specific 2′-methylseleno labels for use in X-ray crystallography. J Am Chem Soc 127:12035–12045

    PubMed  Google Scholar 

  67. Lin L, Sheng J, Huang Z (2011) Nucleic acid X-ray crystallography via direct selenium derivatization. Chem Soc Rev 40:4591–4602

    CAS  PubMed  Google Scholar 

  68. Sheng J, Hassan AE, Huang Z (2009) Synthesis of the first tellurium-derivatized oligonucleotides for structural and functional studies. Chemistry 15:10210–10216

    CAS  PubMed  Google Scholar 

  69. Moroder H et al (2006) Synthesis, oxidation behavior, crystallization and structure of 2′-methylseleno guanosine containing RNAs. J Am Chem Soc 128:9909–9918

    CAS  PubMed  Google Scholar 

  70. Olieric V et al (2009) A fast selenium derivatization strategy for crystallization and phasing of RNA structures. RNA 15:707–715

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Keel AY et al (2007) A general strategy to solve the phase problem in RNA crystallography. Structure 15:761–772

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Keating, KS, Pyle, AM (2012) RCrane: semi-automated RNA model building. Acta Crystallogr D Biol Crystallogr 68, 985–95

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Langer G et al (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3:1171–1179

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Terwilliger TC et al (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr 64:61–69

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Murshudov GN et al (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2:2728–2733

    CAS  PubMed  Google Scholar 

  77. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    CAS  PubMed  Google Scholar 

  78. Tronrud DE (1997) TNT refinement package. Methods Enzymol 277:306–319

    CAS  PubMed  Google Scholar 

  79. Parkinson G et al (1996) New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr D Biol Crystallogr 52:57–64

    CAS  PubMed  Google Scholar 

  80. Tronrud DE, Karplus PA (2011) A conformation-dependent stereochemical library improves crystallographic refinement even at atomic resolution. Acta Crystallogr D Biol Crystallogr 67:699–706

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Chen VB et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Holbrook SR, Kim S-H (1984) Local mobility of nucleic acids as determined from crystallographic data I. RNA and B form DNA. J Mol Biol 173:361–388

    CAS  PubMed  Google Scholar 

  83. Merritt EA (2012) To B or not to B: a question of resolution? Acta Crystallogr D Biol Crystallogr 68:468–477

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Richardson JS et al (2008) RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA ontology consortium contribution). RNA 14:465–481

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Wang X et al (2008) RNABC: forward kinematics to reduce all-atom steric clashes in RNA backbone. J Math Biol 56:253–278

    PubMed Central  PubMed  Google Scholar 

  86. Auffinger P, Hashem Y (2007) SwS: a solvation web service for nucleic acids. Bioinformatics 23:1035–1037

    CAS  PubMed  Google Scholar 

  87. Stefan LR et al (2006) MeRNA: a database of metal ion binding sites in RNA structures. Nucleic Acids Res 34:D131–D134

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Tus, A et al (2012) BioMe: biologically relevant metals. Nucleic Acids Res. 40, W352-357

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Hsin K et al (2008) MESPEUS: a database of the geometry of metal sites in proteins. J Appl Crystrallogr 41:963–968

    CAS  Google Scholar 

  90. Bernstein FC et al (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    CAS  PubMed  Google Scholar 

  91. Berman HM et al (1992) The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J 63:751–759

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Kleywegt GJ et al (2004) The Uppsala electron-density server. Acta Crystallogr D Biol Crystallogr 60:2240–2249

    PubMed  Google Scholar 

  93. Janert PK (2010) Gnuplot in action: understanding data with graphs. Manning Publications, Greenwich, CT

    Google Scholar 

  94. Berman HM et al (2002) The nucleic acid database. Acta Crystallogr D Biol Crystallogr 58:889–898

    PubMed  Google Scholar 

  95. Chin K et al (1999) Calculating the electrostatic properties of RNA provides new insights into molecular interactions and function. Nat Struct Biol 6:1055–1061

    CAS  PubMed  Google Scholar 

  96. Baker NA et al (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Couch GS, Hendrix DK, Ferrin TE (2006) Nucleic acid visualization with UCSF chimera. Nucleic Acids Res 34:e29

    PubMed Central  PubMed  Google Scholar 

  98. Chen H et al (2012) Ionic strength-dependent persistence lengths of single-stranded RNA and DNA. Proc Natl Acad Sci U S A 109:799–804

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Simpkins H, Richards EG (1967) Spectrophotometric titration studies on poly(uridylic acid). Biopolymers 5:551–560

    CAS  Google Scholar 

  100. Inners LD, Felsenfeld G (1970) Conformation of polyribouridylic acid in solution. J Mol Biol 50:373–389

    CAS  PubMed  Google Scholar 

  101. David PR (1999) Cryocrystallography: basic theory and methods. In: McRee DE (ed) Practical protein crystallography, 2nd edn. Academic Press, San Diego, CA, pp 409–443

    Google Scholar 

  102. Berger I et al (1996) A highly efficient 24-condition matrix for the crystallization of nucleic acid fragments. Acta Crystallogr D Biol Crystallogr 52:465–468

    CAS  PubMed  Google Scholar 

  103. Pan B, Shi K, Sundaralingam M (2004) Synthesis, purification and crystallization of guanine-rich RNA oligonucleotides. Biol Proced Online 6:257–262

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Nowakowski J et al (1999) Crystallization of the 10–23 DNA enzyme using a combinatorial screen of paired oligonucleotides. Acta Crystallogr D Biol Crystallogr 55:1885–1892

    CAS  PubMed  Google Scholar 

  105. Kundrot CE (1997) Preparation and crystallization of RNA: a sparse matrix approach. Macromol Crystallogr Pt A 276:143–157

    Google Scholar 

  106. Viladoms, J, Parkinson, GN (2014) HELIX: a new modular nucleic acid crystallization screen. J Applied Cryst. 47:948–955

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Presbyterian Health Foundation (PHF #1545-Mooers), Oklahoma Center for the Advancement of Science and Technology (HR08-138), and the NIH-NIAID (R01-AI088011). We thank Dr. Tzanko Doukov for help with data collection at Stanford Synchrotron Radiation Lightsource (SSRL) beam line 7–1. The Structural Molecular Biology Program at SSRL is supported by DOE-OBER, NIH-NCRR (P41RR001209), and NIH-NIGMS. This work was also supported in part by an Institutional Development Award (IDeA) from the NIH-GMS under grant P20-GM103640.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaine H. M. Mooers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mooers, B.H.M. (2015). Fusion RNAs in Crystallographic Studies of Double-Stranded RNA from Trypanosome RNA Editing. In: Schmidt, F. (eds) RNA-RNA Interactions. Methods in Molecular Biology, vol 1240. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1896-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1896-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1895-9

  • Online ISBN: 978-1-4939-1896-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics