Skip to main content

Identifying RNA Recombination Events and Non-covalent RNA–RNA Interactions with the Molecular Colony Technique

  • Protocol
  • First Online:
RNA-RNA Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1240))

Abstract

Molecular colonies (also known under names nanocolonies, polonies, RNA or DNA colonies, PCR colonies) form when nucleic acids are amplified in a porous solid or semi-solid medium, such as a gel, which contains a system for the exponential multiplication of RNA or DNA. As an individual colony comprises many copies of a single molecule (a molecular clone), the method can be used for the detection, enumeration, and analysis of individual DNA or RNA molecules, including the products of such rare events as RNA recombinations. Here we describe protocols for the detection of RNA molecules by growing colonies of RNA (in a gel containing Qβ replicase, the RNA-dependent RNA polymerase of phage Qβ) or cDNA (in a gel containing the components of PCR), and visualizing them by hybridization with fluorescent probes directly in the gel, including in real time, or by hybridization with fluorescent or radioactive probes followed by transfer to a nylon membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chetverin AB, Chetverina HV, Munishkin AV (1991) On the nature of spontaneous RNA synthesis by Qβ replicase. J Mol Biol 222:3–9

    Article  CAS  PubMed  Google Scholar 

  2. Chetverin AB, Chetverina HV (1997) Method for amplification of nucleic acids in solid media.US Patent 5,616,478

    Google Scholar 

  3. Chetverina HV, Chetverin AB (1993) Cloning of RNA molecules in vitro. Nucleic Acids Res 21:2349–2353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Samatov TR, Chetverina HV, Chetverin AB (2005) Expressible molecular colonies. Nucleic Acids Res 33:e145

    Article  PubMed Central  PubMed  Google Scholar 

  5. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  CAS  PubMed  Google Scholar 

  6. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  CAS  PubMed  Google Scholar 

  7. Mitra RD, Church GM (1999) In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res 27:e34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chetverin AB, Chetverina HV (2008) Molecular colony technique: a new tool for biomedical research and clinical practice. Prog Nucleic Acid Res Mol Biol 82:219–255

    Article  CAS  PubMed  Google Scholar 

  9. Chetverina HV, Chetverin AB (2008) Nanocolonies: detection, cloning, and analysis of individual molecules. Biochemistry (Mosc) 73:1361–1387

    Article  CAS  Google Scholar 

  10. Chetverina EV, Chetverin AB (2010) Nanocolonies and diagnostics of oncological diseases associated with chromosomal translocations. Biochemistry (Mosc) 75:1667–1691

    Article  CAS  Google Scholar 

  11. Chetverin AB, Chetverina HV, Demidenko AA, Ugarov VI (1997) Nonhomologous RNA recombination in a cell-free system: evidence for a transesterification mechanism guided by secondary structure. Cell 88:503–513

    Article  CAS  PubMed  Google Scholar 

  12. Chetverina HV, Demidenko AA, Ugarov VI, Chetverin AB (1999) Spontaneous rearrangements in RNA sequences. FEBS Lett 450:89–94

    Article  CAS  PubMed  Google Scholar 

  13. Chetverin AB, Kopein DS, Chetverina HV, Demidenko AA, Ugarov VI (2005) Viral RNA-directed RNA polymerases use diverse mechanisms to promote recombination between RNA molecules. J Biol Chem 280:8748–8755

    Article  CAS  PubMed  Google Scholar 

  14. Chetverina HV, Falaleeva MV, Chetverin AB (2004) Simultaneous assay of DNA and RNA targets in the whole blood using novel isolation procedure and molecular colony amplification. Anal Biochem 334:376–381

    Article  CAS  PubMed  Google Scholar 

  15. Falaleeva MV, Chetverina HV, Kravchenko AV, Chetverin AB (2009) Use of nanocolonies to detect minimal residual disease in patients with leukemia t(8;21). Mol Biol (Mosk) 43:166–174

    Article  CAS  Google Scholar 

  16. Chetverin AB (2004) Replicable and recombinogenic RNAs. FEBS Lett 567:35–41

    Article  CAS  PubMed  Google Scholar 

  17. Chetverin AB (2011) Paradoxes of replication of RNA of a bacterial virus. Mol Biol (Mosk) 45:127–137

    Article  Google Scholar 

  18. Steinschneider A, Fraenkel-Konrat H (1966) Studies of nucleotide sequences in tobacco mosaic virus nucleic acid. III. Periodat oxidation and semicarbazone formation. Biochemistry 5:2729–2734

    Article  CAS  PubMed  Google Scholar 

  19. Chetverina HV, Samatov TR, Ugarov VI, Chetverin AB (2002) Molecular colony diagnostics: detection and quantitation of viral nucleic acids by in-gel PCR. Biotechniques 33:150–156

    CAS  PubMed  Google Scholar 

  20. Temin HM (1993) Retrovirus variation and reverse transcription: abnormal strand transfers result in retrovirus genetic variation. Proc Natl Acad Sci U S A 90:6900–6903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Negroni M, Riccheti M, Nouvel P, Buc H (1995) Homologous recombination by reverse transcriptase during copying of two distinct RNA templates. Proc Natl Acad Sci U S A 92:6971–6975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Diaz L, DeStefano JJ (1996) Strand transfer is enhanced by mismatched nucleotides at the 3' primer terminus: a possible link between HIV reverse transcriptase fidelity and recombination. Nucleic Acids Res 24:3086–3092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Samatov TR, Chetverina HV, Chetverin AB (2006) Real-time monitoring of DNA colonies growing in a polyacrylamide gel. Anal Biochem 356:300–302

    Article  CAS  PubMed  Google Scholar 

  24. Chetverina EV, Kravchenko AV, Falaleeva MV, Chetverin AB (2007) Express hybridization of molecular colonies with fluorescent probes. Russ J Bioorg Chem 33:423–430

    Article  CAS  Google Scholar 

  25. Blumenthal T (1979) Qβ RNA replicase and protein synthesis elongation factors EF-Tu and EF-Ts. Methods Enzymol 60:628–638

    Article  CAS  PubMed  Google Scholar 

  26. Berestowskaya NH, Vasiliev VD, Volkov AA, Chetverin AB (1988) Electron microscopy study of Qβ replicase. FEBS Lett 228:263–267

    Article  CAS  PubMed  Google Scholar 

  27. Vasiliev NN, Jenner L, Yusupov MM, Chetverin AB (2010) Isolation and crystallization of a chimeric Qβ replicase containing Thermus thermophilus EF-Ts. Biochemistry (Mosc) 75:989–994

    Article  CAS  Google Scholar 

  28. Khandjian EW (1986) UV crosslinking of RNA to nylon membrane enhances hybridization signals. Mol Biol Rep 11:107–115

    Article  CAS  PubMed  Google Scholar 

  29. Jones RW, Jones MJ (1992) Simplified filter paper sandwich blot provides rapid, background-free northern blots. Biotechniques 12:685–688

    Google Scholar 

  30. Gordeev AA, Samatov TR, Chetverina HV, Chetverin AB (2011) 2D format for screening bacterial cells at the throughput of flow cytometry. Biotechnol Bioeng 108:2682–2690

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research and by the program ‘Molecular and Cell Biology’ of the Presidium of the Russian Academy of Sciences. The images of molecular colonies were obtained by Helena Chetverina, Marina Falaleeva, Damir Kopein, and Alexandra Kravchenko.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander B. Chetverin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chetverina, H.V., Chetverin, A.B. (2015). Identifying RNA Recombination Events and Non-covalent RNA–RNA Interactions with the Molecular Colony Technique. In: Schmidt, F. (eds) RNA-RNA Interactions. Methods in Molecular Biology, vol 1240. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1896-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1896-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1895-9

  • Online ISBN: 978-1-4939-1896-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics