Skip to main content

Modular Design of Synthetic Gene Circuits with Biological Parts and Pools

  • Protocol
  • First Online:
Book cover Computational Methods in Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1244))

Abstract

Synthetic gene circuits can be designed in an electronic fashion by displaying their basic components—Standard Biological Parts and Pools of molecules—on the computer screen and connecting them with hypothetical wires. This procedure, achieved by our add-on for the software ProMoT, was successfully applied to bacterial circuits. Recently, we have extended this design-methodology to eukaryotic cells. Here, highly complex components such as promoters and Pools of mRNA contain hundreds of species and reactions whose calculation demands a rule-based modeling approach. We showed how to build such complex modules via the joint employment of the software BioNetGen (rule-based modeling) and ProMoT (modularization). In this chapter, we illustrate how to utilize our computational tool for synthetic biology with the in silico implementation of a simple eukaryotic gene circuit that performs the logic AND operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Endy D (2005) Foundations for engineering biology. Nature 438:449–453

    Article  CAS  PubMed  Google Scholar 

  2. Marchisio MA, Colaiacovo M, Whitehead E, Stelling J (2013) Modular, rule-based modeling for the design of eukaryotic synthetic gene circuits. BMC Syst Biol 7:42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mirschel S, Steinmetz K, Rempel M, Ginkel M, Gilles ED (2009) PROMOT: modular modeling for systems biology. Bioinformatics 25:687–689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical systems with BioNetGen. Methods Mol Biol 500:113–167

    Article  CAS  PubMed  Google Scholar 

  5. Ginkel M, Kremling A, Nutsch T, Rehner R, Gilles ED (2003) Modular modeling of cellular systems with ProMoT/Diva. Bioinformatics 19:1169–1176

    Article  CAS  PubMed  Google Scholar 

  6. Marchisio MA, Stelling J (2008) Computational design of synthetic gene circuits with composable parts. Bioinformatics 24:1903–1910

    Article  CAS  PubMed  Google Scholar 

  7. Marchisio MA, Stelling J (2009) Synthetic gene network computational design, In Proc. IEEE Int Symp Circuits Syst ISCAS 2009:309–312

    Google Scholar 

  8. Saez-Rodriguez J, Kremling A, Gilles ED (2005) Dissecting the puzzle of life: modularization of signal transduction networks. Comput Chem Eng 29:619–629

    Article  CAS  Google Scholar 

  9. Lewin B (2000) Genes VII. Oxford University Press, New York

    Google Scholar 

  10. Marchisio MA, Stelling J (2013) Simplified computational design of synthetic gene digital circuits. In: Kulkarni V, Raman K, Stan G (eds) System theoretic and computational perspectives in systems and synthetic biology. Springer, New York

    Google Scholar 

  11. Marchisio MA, Stelling J (2011) Automatic design of digital synthetic gene circuits. PLoS Comput Biol 7:e1001083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hucka M et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  CAS  PubMed  Google Scholar 

  13. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Article  CAS  PubMed  Google Scholar 

  14. Massé E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374–2383

    Article  PubMed Central  PubMed  Google Scholar 

  15. Maul GG, Deaven L (1977) Quantitative determination of nuclear pore complexes in cycling cells with differing DNA content. J Cell Biol 73:748–760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fujioka A, Terai K, Itoh RE, Aoki K, Nakamura T, Kuroda S, Nishida E, Matsuda M (2006) Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. J Biol Chem 281:8917–8926

    Article  CAS  PubMed  Google Scholar 

  17. Galdzicki M, Rodriguez C, Chandran D, Sauro HM, Gennari JH (2011) Standard biological parts knowledgebase. PLoS One 6:e17005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics 22:3067–3074

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the EU FP7 project ST-FLOW (contract 289326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Andrea Marchisio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marchisio, M.A. (2015). Modular Design of Synthetic Gene Circuits with Biological Parts and Pools. In: Marchisio, M. (eds) Computational Methods in Synthetic Biology. Methods in Molecular Biology, vol 1244. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1878-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1878-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1877-5

  • Online ISBN: 978-1-4939-1878-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics