Skip to main content

Feedback Loops in Biological Networks

  • Protocol
  • First Online:
Computational Methods in Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1244))

Abstract

We introduce fundamental concepts for the design of dynamics and feedback in molecular networks modeled with ordinary differential equations. We use several examples, focusing in particular on the mitogen-activated protein kinase (MAPK) pathway, to illustrate the concept that feedback loops are fundamental in determining the overall dynamic behavior of a system. Often, these loops have a structural function and unequivocally define the system behavior. We conclude with numerical simulations highlighting the potential for bistability and oscillations of the MAPK pathway re-engineered through synthetic promoters and RNA transducers to include positive and negative feedback loops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2):221–231

    Article  CAS  PubMed  Google Scholar 

  2. Hasty J, McMillen D, Collins JJ (2002) Engineered gene circuits. Nature 420:224–230

    Article  CAS  PubMed  Google Scholar 

  3. De Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9:67–103

    Article  PubMed  Google Scholar 

  4. Angeli D, Sontag E (2003) Monotone control systems. IEEE Trans Autom Control 48(10):1684–1698

    Article  Google Scholar 

  5. Huang C-YF, Ferrell JE (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A 93:10078–10083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Asthagiri AR, Lauffenburger DA (2001) A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol Prog 17:227–239

    Article  CAS  PubMed  Google Scholar 

  7. Thomas R (1981) On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: Dora J, Demongeot J, Lacolle B (eds) Numerical methods in the study of critical phenomena. Springer series in synergetics, vol 9. Springer, Berlin/Heidelberg, pp 180–193

    Chapter  Google Scholar 

  8. Domijan M, Pécou E (2011) The interaction graph structure of mass-action reaction networks. J Math Biol 51(8):1–28

    Google Scholar 

  9. Gouze J-L (1998) Positive and negative circuits in dynamical systems. J Biol Syst 6:11–15

    Article  Google Scholar 

  10. Snoussi E (1998) Necessary conditions for multistationarity and stable periodicity. J Biol Syst 6:3–9

    Article  Google Scholar 

  11. Banaji M, Craciun G (2009) Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements. Commun Math Sci 7(4):867–900

    Article  Google Scholar 

  12. Kaufman M, Soule C, Thomas R (2007) A new necessary condition on interaction graphs for multistationarity. J Theor Biol 248(4):675–685

    Article  CAS  PubMed  Google Scholar 

  13. Richard A, Comet J-P (2011) Stable periodicity and negative circuits in differential systems. J Math Biol 63(3):593–600

    Article  PubMed  Google Scholar 

  14. Soulé C (2004) Graphic requirements for multistationarity. ComPlexUs 1(3):123–133

    Google Scholar 

  15. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  CAS  PubMed  Google Scholar 

  16. Atkinson MR, Savageau M, Myers J, Ninfa A (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113:597–607

    Article  CAS  PubMed  Google Scholar 

  17. Kim J, White KS, Winfree E (2006) Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol Syst Biol 68

    Google Scholar 

  18. Padirac A, Fujii T, Rondelez Y (2012) Bottom-up construction of in vitro switchable memories. Proc Natl Acad Sci 109(47):E3212–E3220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Article  CAS  PubMed  Google Scholar 

  20. Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456:516–519

    Article  CAS  PubMed  Google Scholar 

  21. Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M (2009) A tunable synthetic mammalian oscillator. Nature 457:309–312

    Article  CAS  PubMed  Google Scholar 

  22. Kim J, Winfree E (2011) Synthetic in vitro transcriptional oscillators. Mol Syst Biol 7:465

    Article  PubMed Central  PubMed  Google Scholar 

  23. Montagne K, Plasson R, Sakai Y, Fujii T, Rondelez Y (2011) Programming an in vitro DNA oscillator using a molecular networking strategy. Mol Syst Biol 7

    Google Scholar 

  24. Franco E, Friedrichs E, Kim J, Jungmann R, Murray R, Winfree E, Simmel FC (2011) Timing molecular motion and production with a synthetic transcriptional clock. Proc. Natl Acad Sci 108(40):E784–E793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Galloway KE, Franco E, Smolke CD (2013) Dynamically reshaping signaling networks to program cell fate via genetic controllers. Science 341(6152):1235005

    Article  PubMed Central  PubMed  Google Scholar 

  26. Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC, et al. (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15(1):72–84

    Article  CAS  PubMed  Google Scholar 

  27. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASIÑa complex pathway simulator. Bioinformatics 22(24):3067–3074

    Article  CAS  PubMed  Google Scholar 

  28. Kholodenko BN (2000) Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem 267(6):1583–1588

    Article  CAS  PubMed  Google Scholar 

  29. Angeli D, Ferrell JE, Sontag ED (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci U S A 101(7):1822–1827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Khalil HK (2002) Nonlinear systems. Pearson Higher Education, Harlow

    Google Scholar 

  31. Perko L, (1991) Differential equations and dynamical systems. Springer, New York

    Book  Google Scholar 

  32. Å strom KJ, Murray RM (2009) Feedback systems: an introduction for scientists and engineers. Princeton University Press, Princeton

    Google Scholar 

  33. Santos SDM, Verveer PJ, Bastiaens PIH (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9:324–330

    Article  CAS  PubMed  Google Scholar 

  34. Qiao L, Nachbar RB, Kevrekidis IG, Shvartsman SY (2007) Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. PLoS Comput Biol 3(9):e184

    Article  PubMed Central  Google Scholar 

  35. Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature 405(6786):590–593

    Article  CAS  PubMed  Google Scholar 

  36. Austin D, Allen M, McCollum J, Dar R, Wilgus J., Sayler G, Samatova N, Cox C, Simpson M (2006) Gene network shaping of inherent noise spectra. Nature 439(7076):608–611

    Article  CAS  PubMed  Google Scholar 

  37. Nevozhay D, Adams RM, Murphy KF, Josić K, Balázsi G (2009) Negative autoregulation linearizes the dose–response and suppresses the heterogeneity of gene expression. Proc Natl Acad Sci 106(13):5123–5128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323:785–793

    Article  CAS  PubMed  Google Scholar 

  39. Blanchini F, Franco E, Giordano G (2013) A structural classification of candidate oscillators and multistationary systems. bioRxiv doi:10.1101/000562

    Google Scholar 

  40. Alon U (2006) An introduction to systems biology: design principles of biological circuits. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  41. Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, et al. (2002) A genomic regulatory network for development. Science 295(5560):1669–1678

    Article  CAS  PubMed  Google Scholar 

  42. Savageau MA, Voit EO (1987) Recasting nonlinear differential equations as s-systems: a canonical nonlinear form. Math Biosci 87:83–115

    Article  Google Scholar 

  43. Bashor CJ, Helman NC, Yan S, Lim WA (2008) Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319(5869):1539–1543

    Article  CAS  PubMed  Google Scholar 

  44. Ingolia NT, Murray AW (2007) Positive-feedback loops as a flexible biological module. Curr Biol 17:668–677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. O’Shaughnessy EC, Palani S, Collins JJ, Sarkar CA (2011) Tunable signal processing in synthetic MAP kinase cascade. Cell 144:119–131

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Franco, E., Galloway, K.E. (2015). Feedback Loops in Biological Networks. In: Marchisio, M. (eds) Computational Methods in Synthetic Biology. Methods in Molecular Biology, vol 1244. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1878-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1878-2_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1877-5

  • Online ISBN: 978-1-4939-1878-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics