Skip to main content

Following Mitochondria Dynamism: Confocal Analysis of the Organelle Morphology

  • Protocol
  • First Online:
Mitochondrial Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1241))

Abstract

Mitochondria are highly dynamic organelles, whose morphology can vary from an elongated and interconnected network to fragmented units. In recent years, outstanding discoveries have linked mitochondrial morphology to the regulation of an increasing number of biological processes, such as biosynthetic pathways, oxidative phosphorylation and ATP production, calcium buffering, and cell death. Here we describe two of the main methods used to analyze the mitochondrial length in fixed cells and the mitochondrial fusion rate in live cells. Moreover, we focus one of the protocols on T cells, as an example of non-adherent cells, which present some particularities and difficulties in the analysis of mitochondrial shape. We also discuss the main mouse models carrying a mitochondrial targeted fluorescent protein, an invaluable tool to deeply investigate in vivo mitochondrial morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corrado M, Scorrano L, Campello S (2012) Mitochondrial dynamics in cancer and neurodegenerative and neuroinflammatory diseases. Int J Cell Biol 2012:729290. doi:10.1155/2012/729290

    Article  PubMed  PubMed Central  Google Scholar 

  2. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–879. doi:10.1038/nrm2275

    Article  PubMed  CAS  Google Scholar 

  3. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065. doi:10.1126/science.1219855

    Article  PubMed  CAS  Google Scholar 

  4. Campello S, Lacalle RA, Bettella M, Manes S, Scorrano L, Viola A (2006) Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J Exp Med 203:2879–2886. doi:10.1084/jem.20061877

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103. doi:10.1523/JNEUROSCI.1357-09.2009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Ramonet D, Perier C, Recasens A, Dehay B, Bove J, Costa V, Scorrano L, Vila M (2013) Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency. Cell Death Differ 20:77–85. doi:10.1038/cdd.2012.95

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Itoh K, Nakamura K, Iijima M, Sesaki H (2013) Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 23:64–71. doi:10.1016/j.tcb.2012.10.006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Shirendeb UP, Calkins MJ, Manczak M, Anekonda V, Dufour B, McBride JL, Mao P, Reddy PH (2012) Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum Mol Genet 21:406–420. doi:10.1093/hmg/ddr475

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Mitra K, Lippincott-Schwartz J (2010) Analysis of mitochondrial dynamics and functions using imaging approaches. Curr Protoc Cell Biol Chapter 4:Unit 4.25.1–Unit 4.2521. doi:10.1002/0471143030.cb0425s46

    Google Scholar 

  10. Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120:4247–4260. doi:10.1242/jcs.005801

    Article  PubMed  CAS  Google Scholar 

  11. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99:7877–7882. doi:10.1073/pnas.082243699

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Strack RL, Strongin DE, Bhattacharyya D, Tao W, Berman A, Broxmeyer HE, Keenan RJ, Glick BS (2008) A noncytotoxic DsRed variant for whole-cell labeling. Nat Methods 5:955–957. doi:10.1038/nmeth.1264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909. doi:10.1038/nmeth819

    Article  PubMed  CAS  Google Scholar 

  14. Rizzo MA, Davidson MW, Piston DW (2009) Fluorescent protein tracking and detection: applications using fluorescent proteins in living cells. Cold Spring Harb Protoc 2009:pdb.top64. doi:10.1101/pdb.top64

    Google Scholar 

  15. Shitara H, Shimanuki M, Hayashi J, Yonekawa H (2010) Global imaging of mitochondrial morphology in tissues using transgenic mice expressing mitochondrially targeted enhanced green fluorescent protein. Exp Anim 59:99–103

    Article  PubMed  CAS  Google Scholar 

  16. Sterky FH, Lee S, Wibom R, Olson L, Larsson NG (2011) Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc Natl Acad Sci U S A 108:12937–12942. doi:10.1073/pnas.1103295108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Wang Y, Pan Y, Price A, Martin LJ (2011) Generation and characterization of transgenic mice expressing mitochondrial targeted red fluorescent protein selectively in neurons: modeling mitochondriopathy in excitotoxicity and amyotrophic lateral sclerosis. Mol Neurodegener 6:75. doi:10.1186/1750-1326-6-75

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pickles S, Cadieux-Dion M, Alvarez JI, Lecuyer MA, Peyrard SL, Destroismaisons L, St-Onge L, Terouz S, Cossette P, Prat A, Vande Velde C (2013) Endo-MitoEGFP Mice: a novel transgenic mouse with fluorescently marked mitochondria in microvascular endothelial cells. PLoS One 8:e74603. doi:10.1371/journal.pone.0074603

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Pham AH, McCaffery JM, Chan DC (2012) Mouse lines with photo-activatable mitochondria to study mitochondrial dynamics. Genesis 50:833–843. doi:10.1002/dvg.22050

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Chudakov DM, Lukyanov S, Lukyanov KA (2007) Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2:2024–2032. doi:10.1038/nprot.2007.291

    Article  PubMed  CAS  Google Scholar 

  21. Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13:589–598. doi:10.1038/ncb2220

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Karbowski M, Arnoult D, Chen H, Chan DC, Smith CL, Youle RJ (2004) Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J Cell Biol 164:493–499. doi:10.1083/jcb.200309082

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Campello Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Mariotti, F.R., Corrado, M., Campello, S. (2015). Following Mitochondria Dynamism: Confocal Analysis of the Organelle Morphology. In: Palmeira, C., Rolo, A. (eds) Mitochondrial Regulation. Methods in Molecular Biology, vol 1241. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1875-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1875-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1874-4

  • Online ISBN: 978-1-4939-1875-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics