Skip to main content

Epigenome-Wide Association Studies (EWAS): Past, Present, and Future

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

Just as genome-wide association studies (GWAS) grew from the field of genetic epidemiology, so too do epigenome-wide association studies (EWAS) derive from the burgeoning field of epigenetic epidemiology, with both aiming to understand the molecular basis for disease risk. While genetic risk of disease is currently unmodifiable, there is hope that epigenetic risk may be reversible and or modifiable. This review will take a look back at the origins of this field and revisit the past early efforts to conduct EWAS using the 27k Illumina methylation beadarrays, to the present where most investigators are using the 450k Illumina beadarrays and finally to the future where next generation sequencing based methods beckon. There have been numerous diseases, exposures and lifestyle factors investigated with EWAS, with several significant associations now identified. However, much like the GWAS studies, EWAS are likely to require large international consortium-based approaches to reach the numbers of subjects, and statistical and scientific rigor, required for robust findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hindorff LA, MacArthur J, Morales J, Junkins HA, Hall PN, Klemm AK et al. A Catalog of Published Genome-Wide Association Studies. www.genome.gov/gwastudies. Accessed 9 Jan 2014

  2. Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL et al (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45:353–361, 361e351–352

    Google Scholar 

  3. Pharoah PD, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K et al (2013) GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet 45:362–370, 370e361–362

    Google Scholar 

  4. Eeles RA, Olama AA, Benlloch S, Saunders EJ, Leongamornlert DA, Tymrakiewicz M et al (2013) Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet 45:385–391, 391e381–382

    Google Scholar 

  5. Issa JP (2000) The epigenetics of colorectal cancer. Ann N Y Acad Sci 910:140–153, discussion 153–155

    Article  CAS  PubMed  Google Scholar 

  6. Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. Ann N Y Acad Sci 981:82–96

    Article  PubMed  Google Scholar 

  7. Michels KB (2010) The promises and challenges of epigenetic epidemiology. Exp Gerontol 45:297–301

    Article  PubMed  Google Scholar 

  8. Mill J, Heijmans BT (2013) From promises to practical strategies in epigenetic epidemiology. Nat Rev Genet 14:585–594

    Article  CAS  PubMed  Google Scholar 

  9. Relton CL, Davey Smith G (2010) Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment. PLoS Med 7:e1000356

    Article  PubMed Central  PubMed  Google Scholar 

  10. Vaiserman AM, Voitenko VP, Mekhova LV (2011) [Epigenetic epidemiology of age-related diseases]. Ontogenez 42:30–50

    CAS  PubMed  Google Scholar 

  11. Verma M, Rogers S, Divi RL, Schully SD, Nelson S, Joseph Su L, et al (2014) Epigenetic research in cancer epidemiology: trends, opportunities, and challenges. Cancer Epidemiol Biomarkers Prev 23:223–233

    Google Scholar 

  12. Waterland RA (2008) Epigenetic epidemiology of obesity: application of epigenomic technology. Nutr Rev 66(Suppl 1):S21–S23

    Article  PubMed  Google Scholar 

  13. Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27:363–388

    Article  CAS  PubMed  Google Scholar 

  14. Rakyan VK, Down TA, Balding DJ, Beck S (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12:529–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Patel CJ, Bhattacharya J, Butte AJ (2010) An Environment-Wide Association Study (EWAS) on type 2 diabetes mellitus. PLoS One 5:e10746

    Article  PubMed Central  PubMed  Google Scholar 

  16. Bogdanos DP, Smyk DS, Invernizzi P, Rigopoulou EI, Blank M, Pouria S et al (2013) Infectome: a platform to trace infectious triggers of autoimmunity. Autoimmun Rev 12:726–740

    Article  CAS  PubMed  Google Scholar 

  17. Rappaport SM (2012) Biomarkers intersect with the exposome. Biomarkers 17:483–489

    Article  CAS  PubMed  Google Scholar 

  18. Barnett C, Vanicek N, Polman R, Hancock A, Brown B, Smith L et al (2009) Kinematic gait adaptations in unilateral transtibial amputees during rehabilitation. Prosthet Orthot Int 33:135–147

    Article  PubMed  Google Scholar 

  19. Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S et al (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299:1753–1755

    Article  CAS  PubMed  Google Scholar 

  20. Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh CL, Feinberg AP (2002) Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res 62:6442–6446

    CAS  PubMed  Google Scholar 

  21. Cruz-Correa M, Cui H, Giardiello FM, Powe NR, Hylind L, Robinson A et al (2004) Loss of imprinting of insulin growth factor II gene: a potential heritable biomarker for colon neoplasia predisposition. Gastroenterology 126:964–970

    Article  CAS  PubMed  Google Scholar 

  22. Jirtle RL (2004) IGF2 loss of imprinting: a potential heritable risk factor for colorectal cancer. Gastroenterology 126:1190–1193

    Article  CAS  PubMed  Google Scholar 

  23. Ito Y, Koessler T, Ibrahim AE, Rai S, Vowler SL, Abu-Amero S et al (2008) Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer. Hum Mol Genet 17:2633–2643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chan TL, Yuen ST, Kong CK, Chan YW, Chan AS, Ng WF et al (2006) Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet 38:1178–1183

    Article  CAS  PubMed  Google Scholar 

  25. Suter CM, Martin DI, Ward RL (2004) Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 36:497–501

    Article  CAS  PubMed  Google Scholar 

  26. Kwok CT, Vogelaar IP, van Zelst-Stams WA, Mensenkamp AR, Ligtenberg MJ, Rapkins RW, et al (2014) The MLH1 c.-27C>A and c.85G>T variants are linked to dominantly inherited MLH1 epimutation and are borne on a European ancestral haplotype. Eur J Hum Genet 22:617–624

    Google Scholar 

  27. Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M et al (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3' exons of TACSTD1. Nat Genet 41:112–117

    Article  CAS  PubMed  Google Scholar 

  28. Brennan K, Garcia-Closas M, Orr N, Fletcher O, Jones M, Ashworth A et al (2012) Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res 72:2304–2313

    Article  CAS  PubMed  Google Scholar 

  29. Widschwendter M, Apostolidou S, Raum E, Rothenbacher D, Fiegl H, Menon U et al (2008) Epigenotyping in peripheral blood cell DNA and breast cancer risk: a proof of principle study. PLoS One 3:e2656

    Article  PubMed Central  PubMed  Google Scholar 

  30. Iwamoto T, Yamamoto N, Taguchi T, Tamaki Y, Noguchi S. (2011) BRCA1 promoter methylation in peripheral blood cells is associated with increased risk of breast cancer with BRCA1 promoter methylation. Breast Cancer Res Treat 129:69–77

    Google Scholar 

  31. Snell C, Krypuy M, Wong EM, Loughrey MB, Dobrovic A (2008) BRCA1 promoter methylation in peripheral blood DNA of mutation negative familial breast cancer patients with a BRCA1 tumour phenotype. Breast Cancer Res 10:R12

    Article  PubMed Central  PubMed  Google Scholar 

  32. Wong EM, Southey MC, Fox SB, Brown MA, Dowty JG, Jenkins MA et al (2011) Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. Cancer Prev Res (Phila) 4:23–33

    Article  CAS  Google Scholar 

  33. Heijmans BT, Mill J (2012) Commentary: the seven plagues of epigenetic epidemiology. Int J Epidemiol 41:74–78

    Article  PubMed Central  PubMed  Google Scholar 

  34. Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I et al (2013) Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods 10:949–955

    Article  CAS  PubMed  Google Scholar 

  35. Verma M (2012) Epigenome-Wide Association Studies (EWAS) in Cancer. Curr Genomics 13:308–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wilhelm-Benartzi CS, Koestler DC, Karagas MR, Flanagan JM, Christensen BC, Kelsey KT et al (2013) Review of processing and analysis methods for DNA methylation array data. Br J Cancer 109:1394–1402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Bell JT, Saffery R (2012) The value of twins in epigenetic epidemiology. Int J Epidemiol 41:140–150

    Article  PubMed  Google Scholar 

  38. Bock C (2012) Analysing and interpreting DNA methylation data. Nat Rev Genet 13:705–719

    Article  CAS  PubMed  Google Scholar 

  39. Jaffe AE, Murakami P, Lee H, Leek JT, Fallin MD, Feinberg AP et al (2012) Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int J Epidemiol 41:200–209

    Article  PubMed Central  PubMed  Google Scholar 

  40. Ng JW, Barrett LM, Wong A, Kuh D, Smith GD, Relton CL (2012) The role of longitudinal cohort studies in epigenetic epidemiology: challenges and opportunities. Genome Biol 13:246

    Article  PubMed Central  PubMed  Google Scholar 

  41. Ong ML, Holbrook JD. (2014) Novel region discovery method for Infinium 450k DNA methylation data reveals changes associated with aging in muscle and neuronal pathways. Aging Cell 13:142–155

    Google Scholar 

  42. Ramagopalan SV, Rakyan VK (2013) The promise and challenges of blood spot methylomics. Epigenetics 8:775–777

    Article  PubMed Central  PubMed  Google Scholar 

  43. Talens RP, Boomsma DI, Tobi EW, Kremer D, Jukema JW, Willemsen G et al (2010) Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J 24:3135–3144

    Article  CAS  PubMed  Google Scholar 

  44. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D et al (2013) A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450k DNA methylation data. Bioinformatics 29:189–196

    Google Scholar 

  45. Zhuang J, Widschwendter M, Teschendorff AE (2012) A comparison of feature selection and classification methods in DNA methylation studies using the Illumina Infinium platform. BMC Bioinformatics 13:59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lowe R, Gemma C, Beyan H, Hawa MI, Bazeos A, Leslie RD et al (2013) Buccals are likely to be a more informative surrogate tissue than blood for epigenome-wide association studies. Epigenetics 8:445–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Koestler DC, Christensen B, Karagas MR, Marsit CJ, Langevin SM, Kelsey KT et al (2013) Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics 8:816–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Koestler DC, Marsit CJ, Christensen BC, Accomando W, Langevin SM, Houseman EA et al (2012) Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers. Cancer Epidemiol Biomarkers Prev 21:1293–1302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D et al (2012) Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One 7:e41361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH et al (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13:86

    Article  PubMed Central  PubMed  Google Scholar 

  51. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A et al (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31:142–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H et al (2008) Intra-individual change over time in DNA methylation with familial clustering. JAMA 299:2877–2883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Feinberg AP, Irizarry RA, Fradin D, Aryee MJ, Murakami P, Aspelund T et al (2010) Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2:49ra67

    Article  PubMed Central  PubMed  Google Scholar 

  54. Florath I, Butterbach K, Müller H, Bewerunge-Hudler M, Brenner H. (2014) Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet 23:1186–1201

    Google Scholar 

  55. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102:10604–10609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D et al (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 8:e1002629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Bell CG, Finer S, Lindgren CM, Wilson GA, Rakyan VK, Teschendorff AE et al (2010) Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One 5:e14040

    Article  PubMed Central  PubMed  Google Scholar 

  58. Schalkwyk LC, Meaburn EL, Smith R, Dempster EL, Jeffries AR, Davies MN et al (2010) Allelic skewing of DNA methylation is widespread across the genome. Am J Hum Genet 86:196–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJ, Khachigian LM et al (2011) Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5'UTR. Cancer Cell 20:200–213

    Article  CAS  PubMed  Google Scholar 

  60. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H et al (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20:434–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H (2011) Tobacco-smoking-related differential DNA methylation: 27k discovery and replication. Am J Hum Genet 88:450–457

    Google Scholar 

  62. Shenker NS, Polidoro S, van Veldhoven K, Sacerdote C, Ricceri F, Birrell MA et al (2013) Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet 22:843–851

    Article  CAS  PubMed  Google Scholar 

  63. Zhang Y, Yang R, Burwinkel B, Breitling LP, Brenner H. (2014) F2RL3 methylation as a biomarker of current and lifetime smoking exposures. Environ Health Perspect122:131–137

    Google Scholar 

  64. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Gayther SA, Apostolidou S et al (2009) An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS One 4:e8274

    Article  PubMed Central  PubMed  Google Scholar 

  65. Marsit CJ, Koestler DC, Christensen BC, Karagas MR, Houseman EA, Kelsey KT (2011) DNA methylation array analysis identifies profiles of blood-derived DNA methylation associated with bladder cancer. J Clin Oncol 29:1133–1139

    Article  PubMed Central  PubMed  Google Scholar 

  66. Langevin SM, Koestler DC, Christensen BC, Butler RA, Wiencke JK, Nelson HH et al (2012) Peripheral blood DNA methylation profiles are indicative of head and neck squamous cell carcinoma: an epigenome-wide association study. Epigenetics 7:291–299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Xu Z, Bolick SC, DeRoo LA, Weinberg CR, Sandler DP, Taylor JA (2013) Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst 105:694–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Garcia-Closas M, Gail MH, Kelsey KT, Ziegler RG (2013) Searching for blood DNA methylation markers of breast cancer risk and early detection. J Natl Cancer Inst 105:678–680

    Article  PubMed Central  PubMed  Google Scholar 

  69. Brennan K, Flanagan JM (2012) Is there a link between genome-wide hypomethylation in blood and cancer risk? Cancer Prev Res (Phila) 5:1345–1357

    Article  CAS  Google Scholar 

  70. Rakyan VK, Beyan H, Down TA, Hawa MI, Maslau S, Aden D et al (2011) Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 7:e1002300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Hidalgo B, Irvin MR, Sha J, Zhi D, Aslibekyan S, Absher D, et al (2014) Epigenome-wide association study of fasting measures of glucose, insulin, and HOMA-IR in the Genetics of Lipid Lowering Drugs and Diet Network study. Diabetes 63:801–807

    Google Scholar 

  72. Hosokawa M, Yoshikawa T, Negishi R, Yoshino T, Koh Y, Kenmotsu H et al (2013) Microcavity array system for size-based enrichment of circulating tumor cells from the blood of patients with small-cell lung cancer. Anal Chem 85:5692–5698

    Article  CAS  PubMed  Google Scholar 

  73. Shenker NS, Ueland PM, Polidoro S, van Veldhoven K, Ricceri F, Brown R et al (2013) DNA methylation as a long-term biomarker of exposure to tobacco smoke. Epidemiology 24:712–716

    Article  PubMed  Google Scholar 

  74. Philibert RA, Beach SR, Brody GH (2012) Demethylation of the aryl hydrocarbon receptor repressor as a biomarker for nascent smokers. Epigenetics 7:1331–1338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK et al (2012) 450k epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 120:1425–1431

    Google Scholar 

  76. Wan ES, Qiu W, Baccarelli A, Carey VJ, Bacherman H, Rennard SI et al (2012) Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome. Hum Mol Genet 21:3073–3082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Monick MM, Beach SR, Plume J, Sears R, Gerrard M, Brody GH et al (2012) Coordinated changes in AHRR methylation in lymphoblasts and pulmonary macrophages from smokers. Am J Med Genet B Neuropsychiatr Genet 159B:141–151

    Article  PubMed Central  PubMed  Google Scholar 

  78. Philibert RA, Sears RA, Powers LS, Nash E, Bair T, Gerke AK et al (2012) Coordinated DNA methylation and gene expression changes in smoker alveolar macrophages: specific effects on VEGF receptor 1 expression. J Leukoc Biol 92:621–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Haworth KE, Farrell WE, Emes RD, Ismail KM, Carroll WD, Borthwick HA et al (2013) Combined influence of gene-specific cord blood methylation and maternal smoking habit on birth weight. Epigenomics 5:37–49

    Article  CAS  PubMed  Google Scholar 

  80. Nishihara R, Morikawa T, Kuchiba A, Lochhead P, Yamauchi M, Liao X et al (2013) A prospective study of duration of smoking cessation and colorectal cancer risk by epigenetics-related tumor classification. Am J Epidemiol 178:84–100

    Article  PubMed Central  PubMed  Google Scholar 

  81. Philibert RA, Beach SR, Lei MK, Brody GH (2013) Changes in DNA methylation at the aryl hydrocarbon receptor repressor may be a new biomarker for smoking. Clin Epigenetics 5:19

    Article  PubMed Central  PubMed  Google Scholar 

  82. Sun YV, Smith AK, Conneely KN, Chang Q, Li W, Lazarus A et al (2013) Epigenomic association analysis identifies smoking-related DNA methylation sites in African Americans. Hum Genet 132:1027–1037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Zeilinger S, Kuhnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C et al (2013) Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One 8:e63812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H et al (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20:440–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. West J, Beck S, Wang X, Teschendorff AE (2013) An integrative network algorithm identifies age-associated differential methylation interactome hotspots targeting stem-cell differentiation pathways. Sci Rep 3:1630

    Article  PubMed Central  PubMed  Google Scholar 

  86. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Heyn H, Carmona FJ, Gomez A, Ferreira HJ, Bell JT, Sayols S, et al (2013) DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker. Carcinogenesis 34:102–108

    Google Scholar 

  88. Garagnani P, Bacalini MG, Pirazzini C, Gori D, Giuliani C, Mari D et al (2012) Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell 11:1132–1134

    Article  CAS  PubMed  Google Scholar 

  89. Esteller M (2011) Epigenetic changes in cancer. F1000 Biol Rep 3:9

    Article  PubMed Central  PubMed  Google Scholar 

  90. Brennan K, Flanagan JM (2012) Epigenetic epidemiology for cancer risk: harnessing germline epigenetic variation. Methods Mol Biol 863:439–465

    Article  CAS  PubMed  Google Scholar 

  91. Beck S (2010) Taking the measure of the methylome. Nat Biotechnol 28:1026–1028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JMF is funded by Breast Cancer Campaign and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Flanagan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Flanagan, J.M. (2015). Epigenome-Wide Association Studies (EWAS): Past, Present, and Future. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics