Skip to main content

Epigenetic Inhibitors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

Traditional treatments for cancer include chemotherapy, radiation therapy, and surgery. Recently, epigenetic inhibitors have been found to be very effective in cancer treatment. Epigenetic changes such as DNA methylation, histone deacetylation, and microRNA (miRNA) expression are capable of silencing the expression of tumor suppressor genes and inducing oncogenes, leading to clonal proliferation of tumor cells. Methyltransferase inhibitors and histone deacetylase inhibitors have attracted the attention of researchers and clinicians because they provide an alternative therapeutic regime in some diseases, including cancer.

Epigenetic changes are characterized by altered gene expression without any changes in the nucleotide sequences of DNA. In addition, epigenetic changes are dynamic and can be reversed by epigenetic inhibitors. Drugs that inhibit DNA methylation or histone deacetylation have been studied for the reactivation of tumor suppressor genes and repression of cancer cell growth. Epigenetic inhibitors work alone or in combination with other therapeutic agents. To date, several epigenetic inhibitors have been approved for cancer treatment. The main challenge in the field of epigenetic inhibitors is their lack of specificity. Their mechanisms of action and potential in treating cancer are described in this article.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sims RJ 3rd, Reinberg D (2004) From chromatin to cancer: a new histone lysine methyltransferase enters the mix. Nat Cell Biol 6:685–687

    CAS  PubMed  Google Scholar 

  2. Cavalli G (2006) Chromatin and epigenetics in development: blending cellular memory with cell fate plasticity. Development 133:2089–2094

    CAS  PubMed  Google Scholar 

  3. Brown MA, Sim RJ 3rd, Gottlieb PD et al (2006) Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone ceacetylase complex. Mol Cancer 5:26–28

    PubMed Central  PubMed  Google Scholar 

  4. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  Google Scholar 

  5. Jenuwein T (2006) The epigenetic magic of histone lysine methylation. FEBS J 273:3121–3135

    CAS  PubMed  Google Scholar 

  6. Festernstein R, Aragon L (2003) Decoding the epigenetic effects of chromatin. Genome Biol 4:342–345

    Google Scholar 

  7. Mito Y, Henikoff JG, Henikoff S (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37:1090–1097

    CAS  PubMed  Google Scholar 

  8. Barkess G (2006) Chromatin remodeling and genome stability. Genome Biol 7:319–322

    PubMed Central  PubMed  Google Scholar 

  9. Lewin B (2004) Genes VIII. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  10. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481–486

    CAS  PubMed  Google Scholar 

  11. Issa JP, Baylin SB (1996) Epigenetics and human disease. Nat Med 2:281–282

    CAS  PubMed  Google Scholar 

  12. Egger G, Liang G, Aparicio A et al (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    CAS  PubMed  Google Scholar 

  13. Watson RE, Goodman JI (2002) Epigenetics and DNA methylation come of age in toxicology. Toxicol Sci 67:11–16

    CAS  PubMed  Google Scholar 

  14. Staub E, Grone J, Mennerich D et al (2006) A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer. Mol Cancer 5:37–39

    PubMed Central  PubMed  Google Scholar 

  15. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    CAS  PubMed  Google Scholar 

  16. Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291

    CAS  PubMed  Google Scholar 

  17. Richmond TJ (2006) Genomics: predictable packaging. Nature 442:750–752

    CAS  PubMed  Google Scholar 

  18. Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294

    CAS  PubMed  Google Scholar 

  19. Luger K, Mader AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    CAS  PubMed  Google Scholar 

  20. Yap KL, Zhou MM (2006) Structure and function of protein modules in chromatin biology. Results Probl Cell Differ 41:1–23

    CAS  PubMed  Google Scholar 

  21. Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272

    CAS  PubMed  Google Scholar 

  22. Hayes JJ, Clark DJ, Wolffe AP (1991) Histone contributions to the structure of DNA in the nucleosome. Proc Natl Acad Sci U S A 88:6829–6833

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Vitolo JM, Thiriet C, Hayes JJ (2000) The H3-H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome. Mol Cell Biol 20:2167–2175

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Oudet P, Gross-Bellard M, Chambon P (1975) Electron microscope and biochemical evidence that chromatin structure is a repeating unit. Cell 4:281–300

    CAS  PubMed  Google Scholar 

  25. Schalch T, Duda S, Sargent DF et al (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 4:281–300

    Google Scholar 

  26. Bharath MM, Chandra NR, Rao MR (2003) Molecular modeling of the chromatosome particle. Nucleic Acids Res 31:4264–4274

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Bednar J, Horowitz RA, Grigoryev SA et al (1998) Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci U S A 95:14173–14178

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Cui Y, Bustamante C (2000) Pulling a single chromatin fiber reveals the forces that maintain its high-order structure. Proc Natl Acad Sci U S A 97:127–132

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Robinson PJ, Rhodes D (2006) Structure of the ‘30 nm’ chromatin fibre: a key role for the linker histone. Curr Opin Struct Biol 16:336–343

    CAS  PubMed  Google Scholar 

  30. Davey CA, Sargent DF, Luger K et al (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol 319:1097–1113

    CAS  PubMed  Google Scholar 

  31. Vicent GP, Nacht AS, Smith CL et al (2004) DNA instructed displacement of histones H2A and H2B at an inducible promoter. Mol Cell 16:439–452

    CAS  PubMed  Google Scholar 

  32. Adkins NL, Watts M, Gerogel PT (2004) To the 30-nm chromatin fiber and beyond. Biochim Biophys Acta 167:12–23

    Google Scholar 

  33. McBryant SJ, Adams VH, Hansen JC (2006) Chromatin architectural proteins. Chromosome Res 14:39–51

    CAS  PubMed  Google Scholar 

  34. Reiner SL (2005) Epigenetic control in the immune response. Hum Mol Genet 14:41–46

    Google Scholar 

  35. Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15:163–176

    CAS  PubMed  Google Scholar 

  36. Lin W, Dent SY (2006) Functions of histone-modifying enzymes in development. Curr Opin Genet Dev 16:137–142

    CAS  PubMed  Google Scholar 

  37. Dannenberg JH, David G, Zhong S et al (2005) mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev 19:1581–1595

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    CAS  PubMed  Google Scholar 

  39. Lachner M, Jenuwein T (2002) The many faces of histone lysine methylation. Curr Opin Cell Biol 14:286–298

    CAS  PubMed  Google Scholar 

  40. Kouzarides T (2002) Histone methylation in transcriptional control. Curr Opin Genet Dev 14:198–209

    Google Scholar 

  41. Bernstein E, Hake SB (2006) The nucleosome: a little variation goes a long way. Biochem Cell Biol 84:505–517

    CAS  PubMed  Google Scholar 

  42. Lund AH, van Lohuizen M (2004) Epigenetics and cancer. Genes Dev 18:2315–2335

    CAS  PubMed  Google Scholar 

  43. Fraga MF, Esteller M (2005) Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 4:1377–1381

    CAS  PubMed  Google Scholar 

  44. Agrelo R, Cheng WH, Setien F et al (2006) Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci U S A 103:8822–8827

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Dhillon N, Kamakaka RT (2002) Breaking through to the other side: silencers and barriers. Curr Opin Genet Dev 12:188–192

    CAS  PubMed  Google Scholar 

  46. Thomas MC, Chiang CM (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41:105–178

    CAS  PubMed  Google Scholar 

  47. Wittenberg C, Reed SI (2005) Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene 24:2746–2755

    CAS  PubMed  Google Scholar 

  48. Ney PA (2006) Gene expression during terminal erythroid differentiation. Curr Opin Hematol 13:203–208

    CAS  PubMed  Google Scholar 

  49. Teng CT (2006) Factors regulating lactoferrin gene expression. Biochem Cell Biol 84:263–267

    CAS  PubMed  Google Scholar 

  50. Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927

    CAS  PubMed  Google Scholar 

  51. Johnson CN, Adkins NL, Georgel P (2005) Chromatin remodeling complexes: ATP-dependent machines in action. Biochem Cell Biol 83:405–417

    CAS  PubMed  Google Scholar 

  52. Becker PB, Hörz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71:247–273

    CAS  PubMed  Google Scholar 

  53. Horn PJ, Peterson CL (2001) The bromodomain: a regulator of ATP-dependent chromatin remodeling? Front Biosci 6:D1019–D1023

    CAS  PubMed  Google Scholar 

  54. Chen T, Li E (2006) Establishment and maintenance of DNA methylation patterns in mammals. Curr Top Microbiol Immunol 301:179–201

    CAS  PubMed  Google Scholar 

  55. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    CAS  PubMed  Google Scholar 

  56. Pradhan S, Esteve PO (2003) Mammalian DNA (cytosine-5) methyltransferase and their expression. Clin Immunol 109:6–16

    CAS  PubMed  Google Scholar 

  57. Laird PW, Jaenisch R (1996) The role of DNA methylation in cancer genetics and epigenetics. Annu Rev Genet 30:441–464

    CAS  PubMed  Google Scholar 

  58. Jones PA (2002) DNA methylation and cancer. Oncogene 21:5358–5360

    CAS  PubMed  Google Scholar 

  59. Cross SH, Bird AP (1995) CpG islands and genes. Curr Opin Genet Dev 5:309–314

    CAS  PubMed  Google Scholar 

  60. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    CAS  PubMed  Google Scholar 

  61. Bhalla KN (2005) Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 23:3971–3993

    CAS  PubMed  Google Scholar 

  62. Graff JR, Herman JG, Myohanen S (1997) Mapping patterns of CpG island methylation in normal and neoplastic cells implicates both upstream and downstream regions in de novo methylation. J Biol Chem 272:22322–22329

    CAS  PubMed  Google Scholar 

  63. Bestor TH (1998) The host defence function of genomic methylation patterns. Novartis Found Symp 214:187–195, discussion 195–199, 228–232

    CAS  PubMed  Google Scholar 

  64. Baylin SB, Herman JG, Graff JR et al (1998) Alterations in DNA methlyation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196

    CAS  PubMed  Google Scholar 

  65. Barlow DP (1995) Genetic imprinting in mammals. Science 270:1610–1613

    CAS  PubMed  Google Scholar 

  66. Goto T, Monk M (1998) Regulation of X-chromosome inactivation in development in mice and humans. Microbiol Mol Biol Rev 62:362–378

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Bird AP, Wolffe AP (1999) Methylation-induced repression–belts, braces, and chromatin. Cell 99:451–454

    CAS  PubMed  Google Scholar 

  68. Jones PL, Veenstra GJ, Wade PA et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191

    CAS  PubMed  Google Scholar 

  69. Jones PL, Wolffe AP (1999) Relationships between chromatin organization and DNA methylation in determining gene expression. Semin Cancer Biol 9:339–347

    CAS  PubMed  Google Scholar 

  70. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    CAS  PubMed  Google Scholar 

  71. Silverman LR, Demakos EP, Peterson BL et al (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20:2429–2440

    CAS  PubMed  Google Scholar 

  72. Dutnall RN, Denu JM (2002) Methyl magic and HAT tricks. Nat Struct Biol 9:888–891

    CAS  PubMed  Google Scholar 

  73. McManus KJ, Hendzel MJ (2006) The relationship between histone H3 phosphorylation and acetylation throughout the mammalian cell cycle. Biochem Cell Biol 84:640–657

    CAS  PubMed  Google Scholar 

  74. Daujat S, Bauer UM, Shav V et al (2002) Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 12:2090–2097

    CAS  PubMed  Google Scholar 

  75. Dillon N, Festenstein R (2002) Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet 18:252–258

    CAS  PubMed  Google Scholar 

  76. Verdone L, Caserta M, Di Mauro E (2005) Role of histone acetylation in the control of gene expression. Biochem Cell Biol 83:344–353

    CAS  PubMed  Google Scholar 

  77. Verdone L, Agricola E, Caserta M et al (2006) Histone acetylation in gene regulation. Brief Funct Genomic Proteomic 5:209–221

    CAS  PubMed  Google Scholar 

  78. Umlauf D, Goto Y, Feil R (2004) Site-specific analysis of histone methylation and acetylation. Methods Mol Biol 287:99–120

    CAS  PubMed  Google Scholar 

  79. de Ruijter AJ, van Gennip AH, Caron HN et al (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    PubMed Central  PubMed  Google Scholar 

  80. Agalioti T, Chen G, Thanos D (2002) Deciphering the transcriptional histone acetylation code for a human gene. Cell 111:381–392

    CAS  PubMed  Google Scholar 

  81. Brownell JE, Zhou J, Ranalli T et al (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gen5p linking histone acetylation to gene activation. Cell 84:843–851

    CAS  PubMed  Google Scholar 

  82. Kimura A, Matsubara K, Horikoshi M (2005) A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J Biochem 138:647–662

    CAS  PubMed  Google Scholar 

  83. Yang XJ (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32:959–976

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338:17–31

    CAS  PubMed  Google Scholar 

  85. Tsukada Y, Fang J, Erdjument-Bromage H et al (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    CAS  PubMed  Google Scholar 

  86. Wang H, An W, Cao R et al (2003) mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol Cell 12:475–487

    CAS  PubMed  Google Scholar 

  87. Santos-Rosa H, Schneider R, Bannister AJ et al (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411

    CAS  PubMed  Google Scholar 

  88. Shi Y, Lan F, Matson C et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    CAS  PubMed  Google Scholar 

  89. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15:17–29

    Google Scholar 

  90. Kavi HH, Fernandez HR, Xie W et al (2005) RNA silencing in Drosophila. FEBS Lett 579:5940–5949

    CAS  PubMed  Google Scholar 

  91. Kawasaki H, Taira K (2004) Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431:211–217

    CAS  PubMed  Google Scholar 

  92. Morris KV, Chan SW, Jacobsen SE et al (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305:1289–1292

    CAS  PubMed  Google Scholar 

  93. Singh U, Fohn LE, Wakayama T et al (2004) Different molecular mechanisms underlie placental overgrowth phenotypes caused by interspecies hybridization, cloning, and Esx1 mutation. Dev Dyn 230:149–164

    CAS  PubMed  Google Scholar 

  94. Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1635–1655

    CAS  PubMed  Google Scholar 

  95. Saito Y, Liang G, Egger G et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    CAS  PubMed  Google Scholar 

  96. Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes Gatekeepers and caretakers. Nature 386:761–763

    CAS  PubMed  Google Scholar 

  97. Knudson AG (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1:157–162

    CAS  PubMed  Google Scholar 

  98. Galm O, Herman JG, Baylin SB (2006) The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev 20:1–13

    CAS  PubMed  Google Scholar 

  99. Esteller M, Fraga MF, Guo M et al (2001) DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet 10:30001–30007

    Google Scholar 

  100. Grady WM, Willis J, Guilford PJ et al (2000) Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet 26:16–17

    CAS  PubMed  Google Scholar 

  101. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    CAS  PubMed  Google Scholar 

  102. Herman JG, Baylin SB (2000) Promoter-region hypermethylation and gene silencing in human cancer. Curr Top Microbiol Immunol 249:35–54

    CAS  PubMed  Google Scholar 

  103. Merlo A, Herman JG, Mao L et al (1995) 5' CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1:686–692

    CAS  PubMed  Google Scholar 

  104. Leone G, Teofili L, Voso MT et al (2002) DNA methylation and demethylating drugs in myelodysplastic syndromes and secondary leukemias. Hematologica 87:1324–1341

    CAS  Google Scholar 

  105. Herman JG (1999) Hypermethylation of tumor suppressor genes in cancer. Semin Cancer Biol 9:359–367

    CAS  PubMed  Google Scholar 

  106. Herman JG, Latif F, Weng Y et al (1994) Silencing of the WHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91:9700–9704

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153

    CAS  PubMed  Google Scholar 

  108. Burzynski SR (2003) Gene silencing–a new theory of aging. Med Hypotheses 60:578–583

    CAS  PubMed  Google Scholar 

  109. Herman JG, Civin CI, Issa JP et al (1997) Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 57:837–841

    CAS  PubMed  Google Scholar 

  110. Uchida T, Kinoshit T, Nagai H et al (1997) Hypermethylation of the p15INK4B gene in myelodysplastic syndromes. Blood 90:1403–1409

    CAS  PubMed  Google Scholar 

  111. Quesnel B, Guillerm G, Vereecque R et al (1998) Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 91:2985–2990

    CAS  PubMed  Google Scholar 

  112. Galm O, Wilop S, Luders C et al (2005) Clinical implications of aberrant DNA methylation patterns in acute myelogenous leukemia. Ann Hematol 84(Suppl 13):39–46

    CAS  PubMed  Google Scholar 

  113. Melki JR, Vincent PC, Clark SJ (1999) Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res 59:3730–3740

    CAS  PubMed  Google Scholar 

  114. Toyota M, Kopecky KJ, Toyota MO et al (2001) Methylation profiling in acute myeloid leukemia. Blood 97:2823–2829

    CAS  PubMed  Google Scholar 

  115. Shiozawa E, Takimoto M, Makino R et al (2006) Hypermethylation of CpG islands in p16 as a prognostic factor for diffuse large B-cell lymphoma in a high-risk group. Leuk Res 30:859–867

    CAS  PubMed  Google Scholar 

  116. Guillerm G, Gyan E, Wolowiec D et al (2001) p16(INK4a) and p15(INK4b) gene methylations in plasma cells from monoclonal gammopathy of undetermined significance. Blood 98:244–246

    CAS  PubMed  Google Scholar 

  117. Mateos MV, Garcia-Sanz R, Lopez-Perez R et al (2001) p16/INK4a gene inactivation by hypermethylation is associated with aggressive variants of monoclonal gammopathies. Hematol J 2:146–149

    CAS  PubMed  Google Scholar 

  118. Uchida T, Kinoshita T, Ohno T et al (2001) Hypermethylation of p16INK4A gene promoter during the progression of plasma cell dyscrasia. Leukemia 15:157–165

    CAS  PubMed  Google Scholar 

  119. Khan S, Kumagai T, Vora J et al (2004) PTEN promoter is methylated in a proportion of invasive breast cancers. Int J Cancer 112:407–410

    CAS  PubMed  Google Scholar 

  120. Garcia JM, J Silva C, Pena V et al (2004) Promoter methylation of the PTEN gene is a common molecular change in breast cancer. Genes Chromosomes Cancer 41:117–124

    CAS  PubMed  Google Scholar 

  121. Dominguez G, Silva J, Garcia JM et al (2003) Prevalence of aberrant methylation of p14ARF over p16INK4a in some human primary tumors. Mutat Res 530:9–17

    CAS  PubMed  Google Scholar 

  122. Kang YH, Lee HS, Kim WH (2002) Promoter methylation and silencing of PTEN in gastric carcinoma. Lab Invest 82:285–291

    CAS  PubMed  Google Scholar 

  123. Tang S, Luo H, Yu J et al (2003) Relationship between alterations of p16(INK4a) and p14(ARF) genes of CDKN2A locus and gastric carcinogenesis. Chin Med J (Engl) 116:1083–1087

    CAS  Google Scholar 

  124. Pu RT, Laitala LE, Alli PM et al (2003) Methylation profiling of benign and malignant breast lesions and its application to cytopathology. Mod Pathol 16:1095–1101

    PubMed  Google Scholar 

  125. Padar A, Sathyanaraynana UG, Suzuki M et al (2003) Inactivation of cyclin D2 gene in prostate cancers by aberrant promoter methylation. Clin Cancer Res 9:4730–4734

    CAS  PubMed  Google Scholar 

  126. Wong NA, Britton MP, Choi GS et al (2004) Loss of CDX1 expression in colorectal carcinoma: promoter methylation, mutation, and loss of heterozygosity analyses of 37 cell lines. Proc Natl Acad Sci U S A 101:574–579

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Li Q, Ahuja N, Burder PC et al (1999) Methylation and silencing of the Thrombospondin-1 promoter in human cancer. Oncogene 18:3284–3289

    CAS  PubMed  Google Scholar 

  128. Whitcomb BP, Mutch DG, Herzog TJ et al (2003) Frequent HOXA11 and THBS2 promoter methylation, and a methylator phenotype in endometrial adenocarcinoma. Clin Cancer Res 9:2277–2287

    CAS  PubMed  Google Scholar 

  129. Cameron EE, Bachman KE, Myohanen S et al (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107

    CAS  PubMed  Google Scholar 

  130. Lou W, Krill D, Dhir R et al (1999) Methylation of the CD44 metastasis suppressor gene in human prostate cancer. Cancer Res 59:2329–2331

    CAS  PubMed  Google Scholar 

  131. Kudo Y, Kitajima S, Ogawa I et al (2004) Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin. Clin Cancer Res 10:5455–5463

    CAS  PubMed  Google Scholar 

  132. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    CAS  PubMed  Google Scholar 

  133. Kornblitz AB, Herndon JE 2nd, Silverman LR et al (2002) Impact of azacytidine on the quality of life of patients with myelodysplastic syndrome treated in a randomized phase III trial: a Cancer and Leukemia Group B study. J Clin Oncol 20:2441–5242

    Google Scholar 

  134. Kaminskas E, Farrel A, Abraham S, FDA et al (2005) Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11:3604–3608

    CAS  PubMed  Google Scholar 

  135. Kantarjian H, Issa JP, Rosenfeld CS et al (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106:1794–1803

    CAS  PubMed  Google Scholar 

  136. Momparler RL (2013) Epigenetic therapy of non-small cell lung cancer using decitabine (5-aza-2'-deoxycytide). Front Oncol 3:188–192

    PubMed Central  PubMed  Google Scholar 

  137. Batova A, Diccianni MB, Yu JC et al (1997) Frequent and selective methylation of p15 and deletion of both p15 and p16 in T-cell acute lymphoblastic leukemia. Cancer Res 57:832–836

    CAS  PubMed  Google Scholar 

  138. Aoki E, Uchida T, Ohashi H et al (2000) Methylation status of the p15INK4B gene in hematopoietic progenitors and peripheral blood cells in myelodysplastic syndromes. Leukemia 14:586–593

    CAS  PubMed  Google Scholar 

  139. Daskalakis M, Nguyen TT, Nguyen C et al (2002) Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 100:2957–2964

    CAS  PubMed  Google Scholar 

  140. Scott SA, Dong WF, Ichinohasama R et al (2006) 5-Aza-2′-deoxycitidine (decitabine) can relieve p21WAF1 repression in human acute myeloid leukemia by a mechanism involving release of histone deacetylase 1 (HDAC1) without requiring p21WAF1 promoter demethylation. Leuk Res 30:69–76

    CAS  PubMed  Google Scholar 

  141. Kumagai T, Wakimoto N, Yin D et al (2007) Histone deacetylase inhibitor, Suberoylanilide hydroxamic acid (Vorinostat, SAHA) profoundly inhibits the growth of human pancreatic cancer cells. Int J Cancer 121:656–665

    CAS  PubMed  Google Scholar 

  142. Marks P, Rifkind RA, Richon VM et al (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202

    CAS  PubMed  Google Scholar 

  143. Lavau C, Du C, Thirman M et al (2000) Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J 19:4655–4664

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Kalebic T (2003) Epigenetic changes: potential therapeutic targets. Ann N Y Acad Sci 983:278–285

    CAS  PubMed  Google Scholar 

  145. Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92:1210–1216

    CAS  PubMed  Google Scholar 

  146. Hiebert SW, Lutterbach B, Amann J (2001) Role of co-repressors in transcriptional repression mediated by the t(8;21), t(16;21), t(12;21), and inv(16) fusion proteins. Curr Opin Hematol 8:197–200

    CAS  PubMed  Google Scholar 

  147. Di Croce L, Raker VA, Corsaro M et al (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295:1079–1782

    PubMed  Google Scholar 

  148. Carbone R, Botugno OA, Ronzoni S et al (2006) Recruitment of the histone methyltransferase SUV39H1 and its role in the oncogenic properties of the leukemia-associated PML-retinoic acid receptor fusion protein. Mol Cell Biol 26:1288–1296

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Liu S, Shen T, Huynh L et al (2005) Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res 65:1277–1284

    CAS  PubMed  Google Scholar 

  150. Jones PL, Wade PA, Wolffe AP (2001) Purification of the MeCP2/histone deacetylase complex from Xenopus laevis. Methods Mol Biol 181:297–307

    CAS  PubMed  Google Scholar 

  151. Fuks F, Hurd PJ, Wolf D et al (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278:4035–4040

    CAS  PubMed  Google Scholar 

  152. Kondo Y, Shen L, Issa JP (2003) Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol 23:206–215

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Rountree MR, Bachman KE, Herman JG et al (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene 20:3156–3165

    CAS  PubMed  Google Scholar 

  154. Robertson KD, Ait-Si-Ali S, Yokochi T et al (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25:338–342

    CAS  PubMed  Google Scholar 

  155. Bannister AJ, Kouzarides T (2004) Histone methylation: recognizing the methyl mark. Methods Enzymol 376:269–288

    CAS  PubMed  Google Scholar 

  156. Nguyen CT, Weisenberger DJ, Velicescu M et al (2002) Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res 62:6456–6461

    CAS  PubMed  Google Scholar 

  157. Thiagalingam S, Cheng KH, Lee HJ et al (2003) Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci 983:84–100

    CAS  PubMed  Google Scholar 

  158. Momparler RL (2003) Cancer epigenetics. Oncogene 22:6479–6483

    CAS  PubMed  Google Scholar 

  159. Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1:287–299

    CAS  PubMed  Google Scholar 

  160. Drummond DC, Noble CO, Kirpotin DB et al (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–529

    CAS  PubMed  Google Scholar 

  161. Mann BS, Johnson JR, Cohen MH et al (2007) FDA approval summary: varinostat for treatment of advanced primary cutaneous T cell lymphoma. Oncologist 12:1247–1252

    CAS  PubMed  Google Scholar 

  162. Insinga A, Monestiroli S, Ronzoni S et al (2005) Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11:71–76

    CAS  PubMed  Google Scholar 

  163. Warrener R, Beamish H, Burgess A et al (2003) Tumor cell-selective cytotoxicity by targeting cell cycle checkpoints. FASEB J 17:1550–1552

    CAS  PubMed  Google Scholar 

  164. Qiu L, Burgess A, Fairlie DP et al (2000) Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell 11:2069–2083

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Yin D, Ong JM, Desmond JC et al (2007) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clin Cancer Res 13:1045–1052

    CAS  PubMed  Google Scholar 

  166. Luong QT, O’Kelly J, Braunstein GD et al (2006) Antitumor activity of suberoylanilide hydroxamic acid against thyroid cancer cell lines in vitro and in vivo. Clin Cancer Res 12:5570–5577

    CAS  PubMed  Google Scholar 

  167. Komatsu N, Kawamata N, Takeuchi S et al (2006) SAHA, a HDAC inhibitor, has profound anti-growth activity against non-small cell lung cancer cells. Oncol Rep 15:187–191

    CAS  PubMed  Google Scholar 

  168. Sakajiri S, Kumagai T, Kawamata N et al (2005) Histone deacetylase inhibitors profoundly decrease proliferation of human lymphoid cancer cell lines. Exp Hematol 33:53–61

    CAS  PubMed  Google Scholar 

  169. Takai N, Kawamata N, Gui D et al (2004) Human ovarian carcinoma cells: histone deacetylase inhibitors exhibit antiproliferative activity and potently induce apoptosis. Cancer 101:2760–2770

    CAS  PubMed  Google Scholar 

  170. Takai N, Desmond JC, Kumagai T et al (2004) Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin Cancer Res 10:1141–1149

    CAS  PubMed  Google Scholar 

  171. Amin HM, Saeed S, Alkan S (2001) Histone deacetylase inhibitors induce caspase-dependent apoptosis and downregulation of daxx in acute promyelocytic leukemia with t(15;17). Br J Haematol 115:287–297

    CAS  PubMed  Google Scholar 

  172. Munster PN, Troso-Sandoval T, Rosen N et al (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–8497

    CAS  PubMed  Google Scholar 

  173. Marchoin DC, Bicaku E, Daud AI et al (2004) Sequence-specific potentiation of topoisomerase II inhibitors by the histone deacetylase inhibitor suberoylanilide hydroxamic acid. J Cell Biochem 92:223–237

    Google Scholar 

  174. McCaffrey PG, Newsome DA, Fibach E et al (1997) Induction of gamma-globin by histone deacetylase inhibitors. Blood 90:2075–2083

    CAS  PubMed  Google Scholar 

  175. Cao H, Stamatoyannopoulos S, Jung M (2004) Induction of human gamma globin gene expression by histone deacetylase inhibitors. Blood 103:701–709

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Blagosklonny MV, Robey R, Sackett DL et al (2002) Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther 1:937–941

    CAS  PubMed  Google Scholar 

  177. Fang JY, Lu YY (2002) Effects of histone acetylation and DNA methylation on p21 (WAF1) regulation. World J Gastroenterol 8:400–405

    CAS  PubMed  Google Scholar 

  178. Pace BS, White GL, Dover GJ et al (2002) Short-chain fatty acid derivatives induce fetal globin expression and erythropoiesis in vivo. Blood 100:4640–4648

    CAS  PubMed  Google Scholar 

  179. Richon VM, Sandhoff TW, Rifkind RA et al (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A 97:10014–10019

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Sasakawa T, Naoe T, Inoue T et al (2002) Effects of FK228, a novel histone deacetylase inhibitor, on human lymphoma U-937 cells in vitro and in vivo. Biochem Pharmacol 64:1079–1090

    CAS  PubMed  Google Scholar 

  181. Saito A, Tamashita T, Mariko Y et al (1999) A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A 96:4592–4597

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Cang S, Lu Q, Ma Y et al (2010) Clinical advances in hypomethylating agents targeting epigenetic pathways. Curr Cancer Drug Targets 10:539–545

    CAS  PubMed  Google Scholar 

  183. Camphausen K, Burgan W, Cerra M et al (2004) Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 64:316–321

    CAS  PubMed  Google Scholar 

  184. Camphausen K, Cerna D, Scott T et al (2005) Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int J Cancer 114:380–386

    CAS  PubMed  Google Scholar 

  185. Facchetti F, Previdi S, Ballarini M et al (2004) Modulation of pro- and anti-apoptotic factors in human melanoma cells exposed to histone deacetylase inhibitors. Apoptosis 9:573–582

    CAS  PubMed  Google Scholar 

  186. Fandy TE, Srivastava RK (2006) Trichostatin A sensitizes TRAIL-resistant myeloma cells by downregulation of the antiapoptotic Bcl-2 proteins. Cancer Chemother Pharmacol 58:471–477

    CAS  PubMed  Google Scholar 

  187. Ganesan A, Nolan L, Crabb SJ et al (2009) Epigenetic therapy: histone acetylation, DNA methylation and anti-cancer drug discovery. Curr Cancer Drug Targets 9:963–981

    CAS  PubMed  Google Scholar 

  188. Goldsmith KC, Hogarty MD (2005) Targeting programmed cell death pathways with experimental therapeutics: opportunities in high-risk neuroblastoma. Cancer Lett 228:133–141

    CAS  PubMed  Google Scholar 

  189. Kim SH, Ahn S, Han JW et al (2004) Apicidin is a histone deacetylase inhibitor with anti-invasive and anti-angiogenic potentials. Biochem Biophys Res Commun 315:964–970

    CAS  PubMed  Google Scholar 

  190. Marks PA, Xu WS (2009) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107:600–608

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Nome RV, Bratland A, Harman G et al (2005) Cell cycle checkpoint signaling involved in histone deacetylase inhibition and radiation-induced cell death. Mol Cancer Ther 4:1231–1238

    CAS  PubMed  Google Scholar 

  192. Paroni G, Mizzau M, Henderson C et al (2004) Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol Biol Cell 15:2804–2818

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Ree AH, Dueland S, Folkvord S et al (2010) Vorinostat, a histone deacetylase inhibitor, combined with pelvic palliative radiotherapy for gastrointestinal carcinoma: the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study. Lancet Oncol 11:459–464

    CAS  PubMed  Google Scholar 

  194. Shanker S, Srivastava R (2008) Histone deacetylase inhibitors: mechanism and clinical significance in cancer. Adv Exp Med Biol 615:261–298

    Google Scholar 

  195. Siegel D, Hussein M, Belani C et al (2009) Vorinostat in solid and hematologic malignancies. J Hematol Oncol 2:31–37

    PubMed Central  PubMed  Google Scholar 

  196. Falchook GS, Fu S, Naing A et al (2013) Methylation and histone deacetylase inhibition in combination with platinum treatment in patients with advanced malignancies. Invest New Drugs 31:1192–1200

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Christie Kaefer and Britt Reid of the Epidemiology and Genomics Research Program of NIH-NCI for critically reading the manuscript and offering suggestions; we thank Christopher Krauss for typing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirendra Nath Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Verma, M., Banerjee, H.N. (2015). Epigenetic Inhibitors. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics