Skip to main content

Human Papilloma Virus (HPV) Modulation of the HNSCC Epigenome

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

Currently, the human papilloma virus (HPV), in addition to tobacco and alcohol, is considered another independent risk factor for oropharyngeal squamous head and neck cancer (OPSCC), where the prevalence of HPV-16 increases to 50–90 % for the oropharynx. Also, incidence and mortality in head and neck SCC (HNSCC) continue to be higher in African Americans (AA) than in Caucasian Americans (CA). A recent study found that poorer survival outcomes for AA versus CA with oropharyngeal tumors were attributable to racial differences in the prevalence of HPV positive (+) tumors; HPV negative (−) AA and CA patients had similar outcomes (Settle et al., Cancer Prev Res (Phila) 2:776–781, 2009). Evidence indicates that a HPV+ diagnosis has significant prognostic implications; these patients have at least half the risk of death when compared with the HPV− patient, due in part to a better response to chemoradiotherapy (Fakhry et al., J Natl Cancer Inst 100:261–269, 2008).

Epigenetic events of promoter hypermethylation are emerging as promising molecular strategies for cancer detection, representing tumor-specific markers occurring early in tumor progression. HPV infection is now recognized to play a role in the pathogenesis of OPSCC, where HPV+ and HPV− patients appear to be clinically and biologically distinct with reported genome-wide hypomethylation and promoter hypermethylation in HPV+ HNSCC tumors. A recent study from our group applying pathway analysis to investigate the biological role of the differentially methylated genes in HPV+ and HPV− HNSCC reported 8 signal transduction pathways germane to HNSCC (Worsham et al., Otolaryngol Head Neck Surg 149:409–416, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gillison ML, Lowy DR (2004) A causal role for human papillomavirus in head and neck cancer. Lancet 363:1488–1489

    Article  CAS  PubMed  Google Scholar 

  2. Gillison ML, Koch WM, Capone RB et al (2000) Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 92:709–720

    Article  CAS  PubMed  Google Scholar 

  3. Ang KK, Harris J, Wheeler R et al (2010) Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 363:24–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. D’Souza G, Kreimer AR, Viscidi R et al (2007) Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 356:1944–1956

    Article  PubMed  Google Scholar 

  5. Chen AA, Marsit CJ, Christensen BC et al (2009) Genetic variation in the vitamin C transporter, SLC23A2, modifies the risk of HPV16-associated head and neck cancer. Carcinogenesis 30:977–981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Fakhry C, Westra WH, Li S et al (2008) Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst 100:261–269

    Article  CAS  PubMed  Google Scholar 

  7. Worsham MJ, Chen KM, Ghanem T, Stephen J, Divine G (2013) Epigenetic modulation of signal transduction pathways in HPV-associated HNSCC. Otolaryngol Head Neck Surg 149:409–416

    Article  PubMed Central  PubMed  Google Scholar 

  8. Sartor MA, Dolinoy DC, Jones TR et al (2011) Genome-wide methylation and expression differences in HPV(+) and HPV(−) squamous cell carcinoma cell lines are consistent with divergent mechanisms of carcinogenesis. Epigenetics 6:777–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gubanova E, Brown B, Ivanov SV et al (2012) Downregulation of SMG-1 in HPV-positive head and neck squamous cell carcinoma due to promoter hypermethylation correlates with improved survival. Clin Cancer Res 18:1257–1267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lechner M, Fenton T, West J et al (2013) Identification and functional validation of HPV-mediated hypermethylation in head and neck squamous cell carcinoma. Genome Med 5:15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Settle K, Posner MR, Schumaker LM et al (2009) Racial survival disparity in head and neck cancer results from low prevalence of human papillomavirus infection in black oropharyngeal cancer patients. Cancer Prev Res (Phila) 2:776–781

    Article  Google Scholar 

  12. Chernock RD, Zhang Q, El-Mofty SK et al (2011) Human papillomavirus-related squamous cell carcinoma of the oropharynx: a comparative study in whites and African Americans. Arch Otolaryngol Head Neck Surg 137:163–169

    Article  PubMed  Google Scholar 

  13. Worsham MJ, Stephen JK, Chen KM, Mahan M, Schweitzer VP, Havard S, Divine G (2013) Improved survival with HPV among African Americans with oropharyngeal cancer. Clin Cancer Res 19(9):2486–2492

    Article  PubMed Central  PubMed  Google Scholar 

  14. Stephen JK, Chen KM, Shah V et al (2012) Human papillomavirus outcomes in an access-to-care laryngeal cancer cohort. Otolaryngol Head Neck Surg 146:730–738

    Article  PubMed Central  PubMed  Google Scholar 

  15. Richards KL, Zhang B, Baggerly KA et al (2009) Genome-wide hypomethylation in head and neck cancer is more pronounced in HPV-negative tumors and is associated with genomic instability. PLoS One 4:e4941

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lum PY, Chen Y, Zhu J et al (2006) Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes. J Neurochem 97(Suppl 1): 50–62

    Article  CAS  PubMed  Google Scholar 

  17. Nilsson EE, Savenkova MI, Schindler R et al (2010) Gene bionetwork analysis of ovarian primordial follicle development. PLoS One 5:e11637

    Article  PubMed Central  PubMed  Google Scholar 

  18. Chen Y, Zhu J, Lum PY et al (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452:429–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gargalovic PS, Imura M, Zhang B et al (2006) Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci U S A 103:12741–12746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Horvath S, Zhang B, Carlson M et al (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci U S A 103:17402–17407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Stephen JSDG, Chen KM, Chitale D, Havard S, Worsham MJ (2013) Significance of p16 in site-specific HPV positive and HPV negative head and neck squamous cell carcinoma. Cancer Clin Oncol 2:51–61

    PubMed Central  PubMed  Google Scholar 

  22. Lo YM, Tein MS, Lau TK et al (1998) Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 62:768–775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Peitsaro P, Johansson B, Syrjanen S (2002) Integrated human papillomavirus type 16 is frequently found in cervical cancer precursors as demonstrated by a novel quantitative real-time PCR technique. J Clin Microbiol 40:886–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. (1997) User Bulletin #2: ABI Prism 7700 sequence detection system. Perkin-Elmer Corporation, Foster City, CA, pp 1–36

    Google Scholar 

  25. Frisch M, Klocke B, Haltmeier M et al (2009) LitInspector: literature and signal transduction pathway mining in PubMed abstracts. Nucleic Acids Res 37:W135–W140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Olden K, Isaac L, Roberts L (2011) Neighborhood-specific epigenome analysis: the pathway forward to understanding gene-environment interactions. N C Med J 72:125–127

    PubMed  Google Scholar 

  27. Garber K (2002) Breaking the silence: the rise of epigenetic therapy. J Natl Cancer Inst 94:874–875

    Article  PubMed  Google Scholar 

  28. Kopelovich L, Crowell JA, Fay JR (2003) The epigenome as a target for cancer chemoprevention. J Natl Cancer Inst 95:1747–1757

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Worsham Ph.D., F.A.C.M.G. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stephen, J.K., Worsham, M.J. (2015). Human Papilloma Virus (HPV) Modulation of the HNSCC Epigenome. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics