Skip to main content

Epigenetics of Urothelial Carcinoma

  • Protocol
  • First Online:
Book cover Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

Urothelial carcinoma is the most frequent type of bladder cancer. Improvements in diagnostics and therapy of this common tumor are urgently required and need to be based on a better understanding of its biology. Epigenetic aberrations are crucial to urothelial carcinoma development and progression. They affect DNA methylation, histone modifications, chromatin remodeling, long noncoding RNAs, and microRNAs. Compared to other cancers, DNA hypomethylation, especially at LINE-1 retrotransposons, and mutations in enzymes establishing or removing histone acetylation or methylation are particularly prominent. Accumulating evidence suggests that disturbances in DNA methylation, histone modifications and noncoding RNAs may contribute especially to altered differentiation and metastatic potential. With proper selection, histone-modifying enzymes may constitute good targets for therapy. For diagnostics, DNA methylation and miRNA biomarkers are well suited because of their relatively high stability. There are indeed excellent biomarker candidates for DNA-methylation-based diagnostics of urothelial carcinoma, whereas miRNAs are well investigated, but there are still many discrepancies between studies published to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaufman DS, Shipley WU, Feldman AS (2009) Bladder cancer. Lancet 374(9685):239–249

    CAS  PubMed  Google Scholar 

  2. Di Pierro GB et al (2012) Bladder cancer: a simple model becomes complex. Curr Genomics 13(5):395–415

    PubMed Central  PubMed  Google Scholar 

  3. Goebell PJ, Knowles MA (2010) Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium. Urol Oncol 28(4):409–428

    PubMed  Google Scholar 

  4. Han H, Wolff EM, Liang G (2012) Epigenetic alterations in bladder cancer and their potential clinical implications. Adv Urol 2012:546917

    PubMed Central  PubMed  Google Scholar 

  5. Reinert T (2012) Methylation markers for urine-based detection of bladder cancer: the next generation of urinary markers for diagnosis and surveillance of bladder cancer. Adv Urol 2012:503271

    PubMed Central  PubMed  Google Scholar 

  6. Sanchez-Carbayo M (2012) Hypermethylation in bladder cancer: biological pathways and translational applications. Tumour Biol 33(2):347–361

    CAS  PubMed  Google Scholar 

  7. Besaratinia A, Cockburn M, Tommasi S (2013) Alterations of DNA methylome in human bladder cancer. Epigenetics 8(10):1013–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Koutsogiannouli E, Papavassiliou AG, Papanikolaou NA (2013) Complexity in cancer biology: is systems biology the answer? Cancer Med 2(2):164–177

    PubMed Central  PubMed  Google Scholar 

  9. Dudziec E, Goepel JR, Catto JW (2011) Global epigenetic profiling in bladder cancer. Epigenomics 3(1):35–45

    CAS  PubMed  Google Scholar 

  10. Heichman KA, Warren JD (2012) DNA methylation biomarkers and their utility for solid cancer diagnostics. Clin Chem Lab Med 50(10):1707–1721

    CAS  PubMed  Google Scholar 

  11. Chung W et al (2011) Detection of bladder cancer using novel DNA methylation biomarkers in urine sediments. Cancer Epidemiol Biomarkers Prev 20(7):1483–1491

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Phe V, Cussenot O, Roupret M (2009) Interest of methylated genes as biomarkers in urothelial cell carcinomas of the urinary tract. BJU Int 104(7):896–901

    CAS  PubMed  Google Scholar 

  13. Lin HH et al (2010) Increase sensitivity in detecting superficial, low grade bladder cancer by combination analysis of hypermethylation of E-cadherin, p16, p14, RASSF1A genes in urine. Urol Oncol 28(6):597–602

    CAS  PubMed  Google Scholar 

  14. Hoque MO et al (2006) Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection. J Natl Cancer Inst 98(14):996–1004

    CAS  PubMed  Google Scholar 

  15. Vinci S et al (2011) Quantitative methylation analysis of BCL2, hTERT, and DAPK promoters in urine sediment for the detection of non-muscle-invasive urothelial carcinoma of the bladder: a prospective, two-center validation study. Urol Oncol 29(2):150–156

    CAS  PubMed  Google Scholar 

  16. Yates DR et al (2007) Promoter hypermethylation identifies progression risk in bladder cancer. Clin Cancer Res 13(7):2046–2053

    CAS  PubMed  Google Scholar 

  17. Nishiyama N et al (2011) Copy number alterations in urothelial carcinomas: their clinicopathological significance and correlation with DNA methylation alterations. Carcinogenesis 32(4):462–469

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Lauss M et al (2012) DNA methylation analyses of urothelial carcinoma reveal distinct epigenetic subtypes and an association between gene copy number and methylation status. Epigenetics 7(8):858–867

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Coolen MW et al (2010) Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol 12(3):235–246

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Vallot C et al (2011) A novel epigenetic phenotype associated with the most aggressive pathway of bladder tumor progression. J Natl Cancer Inst 103(1):47–60

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Irizarry RA, Wu H, Feinberg AP (2009) A species-generalized probabilistic model-based definition of CpG islands. Mamm Genome 20(9–10):674–680

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Costa VL et al (2010) Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples. Clin Cancer Res 16(23):5842–5851

    CAS  PubMed  Google Scholar 

  23. Wolff EM et al (2010) Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res 70(20):8169–8178

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Dudziec E et al (2011) Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin Cancer Res 17(6):1287–1296

    CAS  PubMed  Google Scholar 

  25. Marsit CJ et al (2011) DNA methylation array analysis identifies profiles of blood-derived DNA methylation associated with bladder cancer. J Clin Oncol 29(9):1133–1139

    PubMed Central  PubMed  Google Scholar 

  26. Reinert T et al (2011) Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin Cancer Res 17(17):5582–5592

    CAS  PubMed  Google Scholar 

  27. Kandimalla R et al (2012) Genome-wide analysis of CpG island methylation in bladder cancer identified TBX2, TBX3, GATA2, and ZIC4 as pTa-specific prognostic markers. Eur Urol 61(6):1245–1256

    CAS  PubMed  Google Scholar 

  28. Dudziec E et al (2012) Integrated epigenome profiling of repressive histone modifications, DNA methylation and gene expression in normal and malignant urothelial cells. PLoS One 7(3):e32750

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Kim YJ et al (2013) HOXA9, ISL1 and ALDH1A3 methylation patterns as prognostic markers for nonmuscle invasive bladder cancer: array-based DNA methylation and expression profiling. Int J Cancer 133(5):1135–1142

    CAS  PubMed  Google Scholar 

  30. Chihara Y et al (2013) Diagnostic markers of urothelial cancer based on DNA methylation analysis. BMC Cancer 13:275

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Marsit CJ et al (2010) Identification of methylated genes associated with aggressive bladder cancer. PLoS One 5(8):e12334

    PubMed Central  PubMed  Google Scholar 

  32. Koestler DC et al (2010) Semi-supervised recursively partitioned mixture models for identifying cancer subtypes. Bioinformatics 26(20):2578–2585

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Serizawa RR et al (2011) Integrated genetic and epigenetic analysis of bladder cancer reveals an additive diagnostic value of FGFR3 mutations and hypermethylation events. Int J Cancer 129(1):78–87

    CAS  PubMed  Google Scholar 

  34. Easwaran H et al (2012) A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res 22(5):837–849

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Dokun OY et al (2008) Relationship of SNCG, S100A4, S100A9 and LCN2 gene expression and DNA methylation in bladder cancer. Int J Cancer 123(12):2798–2807

    CAS  PubMed  Google Scholar 

  36. Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83(3):296–321

    CAS  PubMed  Google Scholar 

  37. Xu Y et al (2012) Unique DNA methylome profiles in CpG island methylator phenotype colon cancers. Genome Res 22(2):283–291

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775(1):138–162

    CAS  PubMed  Google Scholar 

  39. Kimura F et al (2001) Polymorphic methyl group metabolism genes in patients with transitional cell carcinoma of the urinary bladder. Mutat Res 458(1–2):49–54

    CAS  PubMed  Google Scholar 

  40. Nakagawa T et al (2005) DNA hypomethylation on pericentromeric satellite regions significantly correlates with loss of heterozygosity on chromosome 9 in urothelial carcinomas. J Urol 173(1):243–246

    CAS  PubMed  Google Scholar 

  41. Kimura F et al (2001) Destabilization of chromosome 9 in transitional cell carcinoma of the urinary bladder. Br J Cancer 85(12):1887–1893

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Schulz WA (2006) L1 retrotransposons in human cancers. J Biomed Biotechnol 2006(1):83672

    PubMed Central  PubMed  Google Scholar 

  43. Goodier JL, Kazazian HH Jr (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135(1):23–35

    CAS  PubMed  Google Scholar 

  44. Florl AR et al (1999) DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 80(9):1312–1321

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Neuhausen A et al (2006) DNA methylation alterations in urothelial carcinoma. Cancer Biol Ther 5(8):993–1001

    CAS  PubMed  Google Scholar 

  46. Kreimer U et al (2013) HERV-K and LINE-1 DNA methylation and reexpression in urothelial carcinoma. Front Oncol 3:255

    PubMed Central  PubMed  Google Scholar 

  47. Lee E et al (2012) Landscape of somatic retrotransposition in human cancers. Science 337(6097):967–971

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Iskow RC et al (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141(7):1253–1261

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Burns MB, Temiz NA, Harris RS (2013) Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet 45(9):977–983

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Roberts SA et al (2013) An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45(9):970–976

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Wolff EM et al (2010) Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6(4):e1000917

    PubMed Central  PubMed  Google Scholar 

  52. van Bemmel D et al (2012) Correlation of LINE-1 methylation levels in patient-matched buffy coat, serum, buccal cell, and bladder tumor tissue DNA samples. Cancer Epidemiol Biomarkers Prev 21(7):1143–1148

    PubMed Central  PubMed  Google Scholar 

  53. Moore LE et al (2008) Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish Bladder Cancer Study: a case-control study. Lancet Oncol 9(4):359–366

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Brennan K, Flanagan JM (2012) Is there a link between genome-wide hypomethylation in blood and cancer risk? Cancer Prev Res (Phila) 5(12):1345–1357

    CAS  Google Scholar 

  55. Woo HD, Kim J (2012) Global DNA hypomethylation in peripheral blood leukocytes as a biomarker for cancer risk: a meta-analysis. PLoS One 7(4):e34615

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Hinz S et al (2008) Expression of the polycomb group protein EZH2 and its relation to outcome in patients with urothelial carcinoma of the bladder. J Cancer Res Clin Oncol 134(3):331–336

    CAS  PubMed  Google Scholar 

  57. Wang H et al (2012) Increased EZH2 protein expression is associated with invasive urothelial carcinoma of the bladder. Urol Oncol 30(4):428–433

    PubMed  Google Scholar 

  58. Weikert S et al (2005) Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. Int J Mol Med 16(2):349–353

    CAS  PubMed  Google Scholar 

  59. Raman JD et al (2005) Increased expression of the polycomb group gene, EZH2, in transitional cell carcinoma of the bladder. Clin Cancer Res 11(24 Pt 1):8570–8576

    CAS  PubMed  Google Scholar 

  60. van Haaften G et al (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41(5):521–523

    PubMed Central  PubMed  Google Scholar 

  61. Gui Y et al (2011) Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet 43(9):875–878

    CAS  PubMed  Google Scholar 

  62. Guo G et al (2013) Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat Genet 45(12):1459–1463

    CAS  PubMed  Google Scholar 

  63. You SH et al (2013) Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3 in vivo. Nat Struct Mol Biol 20(2):182–187

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Niegisch G et al (2013) Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers. Urol Oncol 31(8):1770–1779

    CAS  PubMed  Google Scholar 

  65. Fullgrabe J, Kavanagh E, Joseph B (2011) Histone onco-modifications. Oncogene 30(31):3391–3403

    CAS  PubMed  Google Scholar 

  66. Wang Z et al (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138(5):1019–1031

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Plass C et al (2013) Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet 14(11):765–780

    CAS  PubMed  Google Scholar 

  68. Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8(4):284–295

    CAS  PubMed  Google Scholar 

  69. Wang F, Marshall CB, Ikura M (2013) Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci 70(21):3989–4008

    CAS  PubMed  Google Scholar 

  70. Takawa M et al (2011) Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. Cancer Sci 102(7):1298–1305

    CAS  PubMed  Google Scholar 

  71. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945

    Google Scholar 

  72. Birney E et al (2007) Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature 447(7146):799–816

    CAS  PubMed  Google Scholar 

  73. Gibb EA et al (2011) Human cancer long non-coding RNA transcriptomes. PLoS One 6(10):e25915

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23(13):1494–1504

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Khalil AM et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106(28):11667–11672

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159

    CAS  PubMed  Google Scholar 

  78. Brannan CI et al (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol 10(1):28–36

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Brown CJ et al (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71(3):527–542

    CAS  PubMed  Google Scholar 

  80. Froberg JE, Yang L, Lee JT (2013) Guided by RNAs: X-inactivation as a model for lncRNA function. J Mol Biol 425(19):3698–3706

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Orom UA, Shiekhattar R (2011) Long non-coding RNAs and enhancers. Curr Opin Genet Dev 21(2):194–198

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Guttman M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Cabili MN et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193(3):651–669

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Liedtke S, Stephan M, Kogler G (2008) Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biol Chem 389(7):845–850

    CAS  PubMed  Google Scholar 

  86. Wezel F et al (2013) Differential expression of Oct4 variants and pseudogenes in normal urothelium and urothelial cancer. Am J Pathol 183(4):1128–1136

    CAS  PubMed  Google Scholar 

  87. Hoffmann MJ et al (2006) Epigenetic control of CTCFL/BORIS and OCT4 expression in urogenital malignancies. Biochem Pharmacol 72(11):1577–1588

    CAS  PubMed  Google Scholar 

  88. Guttman M et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Rinn JL et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Lee JT, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21(4):400–404

    CAS  PubMed  Google Scholar 

  91. Chureau C et al (2002) Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine. Genome Res 12(6):894–908

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Cai X, Cullen BR (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13(3):313–316

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Elkin M et al (1995) The expression of the imprinted H19 and IGF-2 genes in human bladder carcinoma. FEBS Lett 374(1):57–61

    CAS  PubMed  Google Scholar 

  94. Hoffmann MJ et al (2005) Multiple mechanisms downregulate CDKN1C in human bladder cancer. Int J Cancer 114(3):406–413

    CAS  PubMed  Google Scholar 

  95. Dean A (2011) In the loop: long range chromatin interactions and gene regulation. Brief Funct Genomics 10(1):3–10

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6(12):893–904

    CAS  PubMed  Google Scholar 

  97. Taft RJ et al (2010) Non-coding RNAs: regulators of disease. J Pathol 220(2):126–139

    CAS  PubMed  Google Scholar 

  98. Cheetham SW et al (2013) Long noncoding RNAs and the genetics of cancer. Br J Cancer 108(12):2419–2425

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9(6):703–719

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Qiu MT et al (2013) Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol 34(2):613–620

    CAS  PubMed  Google Scholar 

  101. Zhao J et al (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40(6):939–953

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Ule J et al (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37(4):376–386

    CAS  PubMed  Google Scholar 

  103. Low JT, Weeks KM (2010) SHAPE-directed RNA secondary structure prediction. Methods 52(2):150–158

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Weeks KM (2010) Advances in RNA structure analysis by chemical probing. Curr Opin Struct Biol 20(3):295–304

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Tang JY et al (2013) Long noncoding RNAs-related diseases, cancers, and drugs. ScientificWorldJournal 2013:943539

    PubMed Central  PubMed  Google Scholar 

  106. Chu C, Quinn J, Chang HY (2012) Chromatin isolation by RNA purification (ChIRP). J Vis Exp 61:e3912

    Google Scholar 

  107. Mariner PD et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29(4):499–509

    CAS  PubMed  Google Scholar 

  108. Simon MD et al (2011) The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci U S A 108(51):20497–20502

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Pandey RR et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246

    CAS  PubMed  Google Scholar 

  110. Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    CAS  PubMed Central  PubMed  Google Scholar 

  111. He W et al (2013) linc-UBC1 physically associates with polycomb repressive complex 2 (PRC2) and acts as a negative prognostic factor for lymph node metastasis and survival in bladder cancer. Biochim Biophys Acta 1832(10):1528–1537

    CAS  PubMed  Google Scholar 

  112. Liu Z et al (2013) Downregulation of GAS5 promotes bladder cancer cell proliferation, partly by regulating CDK6. PLoS One 8(9):e73991

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Kim K et al (2013) HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32(13):1616–1625

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Yang Z et al (2011) Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol 18(5):1243–1250

    PubMed  Google Scholar 

  115. Sorensen KP et al (2013) Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res Treat 142(3):529–536

    PubMed  Google Scholar 

  116. Niinuma T et al (2012) Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res 72(5):1126–1136

    CAS  PubMed  Google Scholar 

  117. Nie Y et al (2013) Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Sci 104(4):458–464

    CAS  PubMed  Google Scholar 

  118. Nakano S et al (2006) Expression profile of LIT1/KCNQ1OT1 and epigenetic status at the KvDMR1 in colorectal cancers. Cancer Sci 97(11):1147–1154

    CAS  PubMed  Google Scholar 

  119. Kawakami T et al (2003) The roles of supernumerical X chromosomes and XIST expression in testicular germ cell tumors. J Urol 169(4):1546–1552

    PubMed  Google Scholar 

  120. Kawakami T et al (2004) Characterization of loss-of-inactive X in Klinefelter syndrome and female-derived cancer cells. Oncogene 23(36):6163–6169

    CAS  PubMed  Google Scholar 

  121. Zhang C et al (2005) Distinctive epigenetic phenotype of cancer testis antigen genes among seminomatous and nonseminomatous testicular germ-cell tumors. Genes Chromosomes Cancer 43(1):104–112

    CAS  PubMed  Google Scholar 

  122. Weakley SM et al (2011) Expression and function of a large non-coding RNA gene XIST in human cancer. World J Surg 35(8):1751–1756

    PubMed Central  PubMed  Google Scholar 

  123. Yap KL et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38(5):662–674

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Pasmant E et al (2011) ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 25(2):444–448

    CAS  PubMed  Google Scholar 

  125. Timofeeva MN et al (2012) Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Hum Mol Genet 21(22):4980–4995

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Iacobucci I et al (2011) A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia. Leuk Res 35(8):1052–1059

    CAS  PubMed  Google Scholar 

  127. Golka K et al (2011) Genetic variants in urinary bladder cancer: collective power of the “wimp SNPs”. Arch Toxicol 85(6):539–554

    CAS  PubMed  Google Scholar 

  128. Yang L et al (2011) ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147(4):773–788

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Han Y et al (2013) Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder. J Surg Oncol 107(5):555–559

    CAS  PubMed  Google Scholar 

  130. Nakagawa S, Hirose T (2012) Paraspeckle nuclear bodies–useful uselessness? Cell Mol Life Sci 69(18):3027–3036

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Ariel I et al (2000) The imprinted H19 gene is a marker of early recurrence in human bladder carcinoma. Mol Pathol 53(6):320–323

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Luo M et al (2013) Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression. FEBS J 280(7):1709–1716

    CAS  PubMed  Google Scholar 

  133. Luo M et al (2013) Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 333(2):213–221

    CAS  PubMed  Google Scholar 

  134. Sidi AA et al (2008) Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to bacillus Calmette-Guerin. J Urol 180(6):2379–2383

    PubMed  Google Scholar 

  135. Amit D, Hochberg A (2010) Development of targeted therapy for bladder cancer mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. J Transl Med 8:134

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Huarte M et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Ozgur E et al (2013) Differential expression of long non-coding RNAs during genotoxic stress-induced apoptosis in HeLa and MCF-7 cells. Clin Exp Med 13(2):119–126

    PubMed  Google Scholar 

  138. Yoon JH et al (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47(4):648–655

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Zhang X et al (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 88(11):5119–5126

    CAS  PubMed  Google Scholar 

  140. Lu KH et al (2013) Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer 13:461

    PubMed Central  PubMed  Google Scholar 

  141. Wang P, Ren Z, Sun P (2012) Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem 113(6):1868–1874

    CAS  PubMed  Google Scholar 

  142. Sun M et al (2013) Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol 35(2):1065–1073

    Google Scholar 

  143. Balik V et al (2013) MEG3: a novel long noncoding potentially tumour-suppressing RNA in meningiomas. J Neurooncol 112(1):1–8

    CAS  PubMed  Google Scholar 

  144. Zhang X et al (2010) Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151(3):939–947

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Zhou Y et al (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282(34):24731–24742

    CAS  PubMed  Google Scholar 

  146. Ying L et al (2013) Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosyst 9(3):407–411

    CAS  PubMed  Google Scholar 

  147. Hung T et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43(7):621–629

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Willingham AT et al (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309(5740):1570–1573

    CAS  PubMed  Google Scholar 

  149. Liu Z et al (2011) The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol 12(11):1063–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Sharma S et al (2011) Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc Natl Acad Sci U S A 108(28):11381–11386

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Kino T et al (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3(107):ra8

    PubMed Central  PubMed  Google Scholar 

  152. Wilusz JE, Freier SM, Spector DL (2008) 3' end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135(5):919–932

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Gutschner T, Hammerle M, Diederichs S (2013) MALAT1 – a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl) 91(7):791–801

    CAS  Google Scholar 

  154. Ji P et al (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39):8031–8041

    PubMed  Google Scholar 

  155. Gutschner T, Baas M, Diederichs S (2011) Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Res 21(11):1944–1954

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Sarma K et al (2010) Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome. Proc Natl Acad Sci U S A 107(51):22196–22201

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Ying L et al (2012) Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst 8(9):2289–2294

    CAS  PubMed  Google Scholar 

  158. Han Y et al (2013) Inducing cell proliferation inhibition, apoptosis, and motility reduction by silencing long noncoding ribonucleic acid metastasis-associated lung adenocarcinoma transcript 1 in urothelial carcinoma of the bladder. Urology 81(1):209 e1–7

    Google Scholar 

  159. Eißmann M et al (2012) Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol 9(8):1076–1087

    Google Scholar 

  160. Zhang B et al (2012) The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2(1):111–123

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Grippo PJ, Sandgren EP (2000) Highly invasive transitional cell carcinoma of the bladder in a simian virus 40T-antigen transgenic mouse model. Am J Pathol 157(3):805–813

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Poliseno L et al (2010) Identification of the miR-106b ~ 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3(117):ra29

    PubMed Central  PubMed  Google Scholar 

  163. Johnsson P et al (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20(4):440–446

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Zhang Q et al (2013) The complexity of bladder cancer: long noncoding RNAs are on the stage. Mol Cancer 12(1):101

    PubMed Central  PubMed  Google Scholar 

  165. Sharron Lin X et al (2013) Differentiating progressive from nonprogressive T1 bladder cancer by gene expression profiling: Applying RNA-sequencing analysis on archived specimens. Urol Oncol 32(3):327–336

    Google Scholar 

  166. Wang XS et al (2006) Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin Cancer Res 12(16):4851–4858

    CAS  PubMed  Google Scholar 

  167. Wang F et al (2008) UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett 582(13):1919–1927

    CAS  PubMed  Google Scholar 

  168. Yang C et al (2012) Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells. Gene 496(1):8–16

    CAS  PubMed  Google Scholar 

  169. Wu W et al (2013) Ets-2 regulates cell apoptosis via the Akt pathway, through the regulation of urothelial cancer associated 1, a long non-coding RNA, in bladder cancer cells. PLoS One 8(9):e73920

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Wang Y et al (2012) Long non-coding RNA UCA1a(CUDR) promotes proliferation and tumorigenesis of bladder cancer. Int J Oncol 41(1):276–284

    CAS  PubMed  Google Scholar 

  171. Yu M et al (2009) High expression of ncRAN, a novel non-coding RNA mapped to chromosome 17q25.1, is associated with poor prognosis in neuroblastoma. Int J Oncol 34(4):931–938

    CAS  PubMed  Google Scholar 

  172. Zhu Y et al (2011) ncRAN, a newly identified long noncoding RNA, enhances human bladder tumor growth, invasion, and survival. Urology 77(2):510 e1–5

    Google Scholar 

  173. Rivas A et al (2012) Determination of the differential expression of mitochondrial long non-coding RNAs as a noninvasive diagnosis of bladder cancer. BMC Urol 12:37

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Van Tilborg AA, Bangma CH, Zwarthoff EC (2009) Bladder cancer biomarkers and their role in surveillance and screening. Int J Urol 16(1):23–30

    PubMed  Google Scholar 

  175. de la Taille A (2007) Progensa PCA3 test for prostate cancer detection. Expert Rev Mol Diagn 7(5):491–497

    PubMed  Google Scholar 

  176. Tsai MC, Spitale RC, Chang HY (2011) Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res 71(1):3–7

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Schmittgen TD (2008) Regulation of microRNA processing in development, differentiation and cancer. J Cell Mol Med 12(5B):1811–1819

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Catto JW et al (2009) Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res 69(21):8472–8481

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Han Y et al (2013) Inducing cell proliferation inhibition and apoptosis via silencing Dicer, Drosha, and Exportin 5 in urothelial carcinoma of the bladder. J Surg Oncol 107(2):201–205

    CAS  PubMed  Google Scholar 

  180. Wu D et al (2012) Downregulation of Dicer, a component of the microRNA machinery, in bladder cancer. Mol Med Rep 5(3):695–699

    CAS  PubMed  Google Scholar 

  181. Aravin A, Tuschl T (2005) Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579(26):5830–5840

    CAS  PubMed  Google Scholar 

  182. Creighton CJ, Reid JG, Gunaratne PH (2009) Expression profiling of microRNAs by deep sequencing. Brief Bioinform 10(5):490–497

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Meyer SU, Pfaffl MW, Ulbrich SE (2010) Normalization strategies for microRNA profiling experiments: a ‘normal’ way to a hidden layer of complexity? Biotechnol Lett 32(12):1777–1788

    CAS  PubMed  Google Scholar 

  184. Benes V, Castoldi M (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50(4):244–249

    CAS  PubMed  Google Scholar 

  185. Farazi TA et al (2013) MicroRNAs in human cancer. Adv Exp Med Biol 774:1–20

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Dijkstra JR et al (2012) MicroRNA expression in formalin-fixed paraffin embedded tissue using real time quantitative PCR: the strengths and pitfalls. J Cell Mol Med 16(4):683–690

    CAS  PubMed  Google Scholar 

  187. Bitzer M et al (2012) Quantitative analysis of miRNA expression in epithelial cells and tissues. Methods Mol Biol 820:55–70

    CAS  PubMed  Google Scholar 

  188. Tan Gana NH, Victoriano AF, Okamoto T (2012) Evaluation of online miRNA resources for biomedical applications. Genes Cells 17(1):11–27

    PubMed  Google Scholar 

  189. Zabolotneva AA et al (2013) A systematic experimental evaluation of microRNA markers of human bladder cancer. Front Genet 4:247

    PubMed Central  PubMed  Google Scholar 

  190. Fendler A et al (2011) MicroRNAs as regulators of signal transduction in urological tumors. Clin Chem 57(7):954–968

    CAS  PubMed  Google Scholar 

  191. Nicoloso MS et al (2009) MicroRNAs–the micro steering wheel of tumour metastases. Nat Rev Cancer 9(4):293–302

    CAS  PubMed  Google Scholar 

  192. Baffa R et al (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219(2):214–221

    CAS  PubMed  Google Scholar 

  193. Ostenfeld MS et al (2010) miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene 29(7):1073–1084

    CAS  PubMed  Google Scholar 

  194. Adam L et al (2009) miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 15(16):5060–5072

    CAS  PubMed  Google Scholar 

  195. Wiklund ED et al (2011) Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer 128(6):1327–1334

    CAS  PubMed  Google Scholar 

  196. Kunej T et al (2011) Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res 717(1–2):77–84

    CAS  PubMed  Google Scholar 

  197. Guancial EA et al (2014) The evolving understanding of microRNA in bladder cancer. Urol Oncol 32(1):41 e31–40

    Google Scholar 

  198. Li X et al (2011) Comparative mRNA and microRNA expression profiling of three genitourinary cancers reveals common hallmarks and cancer-specific molecular events. PLoS One 6(7):e22570

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Catto JW et al (2011) MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol 59(5):671–681

    CAS  PubMed  Google Scholar 

  200. Schaefer A et al (2010) MicroRNAs and cancer: current state and future perspectives in urologic oncology. Urol Oncol 28(1):4–13

    CAS  PubMed  Google Scholar 

  201. Dyrskjot L et al (2009) Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res 69(11):4851–4860

    CAS  PubMed  Google Scholar 

  202. Veerla S et al (2009) MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer 124(9):2236–2242

    CAS  PubMed  Google Scholar 

  203. Ichimi T et al (2009) Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer 125(2):345–352

    CAS  PubMed  Google Scholar 

  204. Allen KE, Weiss GJ (2010) Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 9(12):3126–3136

    CAS  PubMed  Google Scholar 

  205. Wang Z et al (2010) Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Updat 13(4–5):109–118

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Vinall RL et al (2012) MiR-34a chemosensitizes bladder cancer cells to cisplatin treatment regardless of p53-Rb pathway status. Int J Cancer 130(11):2526–2538

    CAS  PubMed  Google Scholar 

  207. Nordentoft I et al (2012) miRNAs associated with chemo-sensitivity in cell lines and in advanced bladder cancer. BMC Med Genomics 5:40

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Tao J et al (2011) microRNA-21 modulates cell proliferation and sensitivity to doxorubicin in bladder cancer cells. Oncol Rep 25(6):1721–1729

    CAS  PubMed  Google Scholar 

  209. Kozinn SI et al (2013) MicroRNA profile to predict gemcitabine resistance in bladder carcinoma cell lines. Genes Cancer 4(1–2):61–69

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Uchino K et al (2013) Therapeutic effects of microRNA-582-5p and -3p on the inhibition of bladder cancer progression. Mol Ther 21(3):610–619

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Liu Y et al (2012) Synthetic miRNA-mowers targeting miR-183-96-182 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells. PLoS One 7(12):e52280

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Ru Y, Dancik GM, Theodorescu D (2011) Biomarkers for prognosis and treatment selection in advanced bladder cancer patients. Curr Opin Urol 21(5):420–427

    PubMed Central  PubMed  Google Scholar 

  213. Wittmann J, Jack HM (2010) Serum microRNAs as powerful cancer biomarkers. Biochim Biophys Acta 1806(2):200–207

    CAS  PubMed  Google Scholar 

  214. Allegra A et al (2012) Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol 41(6):1897–1912

    CAS  PubMed  Google Scholar 

  215. Duijvesz D et al (2011) Exosomes as biomarker treasure chests for prostate cancer. Eur Urol 59(5):823–831

    CAS  PubMed  Google Scholar 

  216. Weiland M et al (2012) Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol 9(6):850–859

    CAS  PubMed  Google Scholar 

  217. Roos PH, Jakubowski N (2010) Methods for the discovery of low-abundance biomarkers for urinary bladder cancer in biological fluids. Bioanalysis 2(2):295–309

    CAS  PubMed  Google Scholar 

  218. Tolle A et al (2013) Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer. Oncol Rep 30(4):1949–1956

    PubMed  Google Scholar 

  219. Mlcochova H et al (2014) Urine microRNAs as potential noninvasive biomarkers in urologic cancers. Urol Oncol 32(1):41 e1–9

    Google Scholar 

  220. Hanke M et al (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28(6):655–661

    CAS  PubMed  Google Scholar 

  221. Snowdon J et al (2012) A pilot study of urinary microRNA as a biomarker for urothelial cancer. Can Urol Assoc J 15:1–5

    Google Scholar 

  222. Miah S et al (2012) An evaluation of urinary microRNA reveals a high sensitivity for bladder cancer. Br J Cancer 107(1):123–128

    CAS  PubMed Central  PubMed  Google Scholar 

  223. Kohler CU et al (2013) Analyses in human urothelial cells identify methylation of miR-152, miR-200b and miR-10a genes as candidate bladder cancer biomarkers. Biochem Biophys Res Commun 438(1):48–53

    CAS  PubMed  Google Scholar 

  224. Fendler A, Jung K (2013) MicroRNAs as new diagnostic and prognostic biomarkers in urological tumors. Crit Rev Oncog 18(4):289–302

    PubMed  Google Scholar 

  225. Wang KC et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120–124

    CAS  PubMed Central  PubMed  Google Scholar 

  226. Quagliata L et al (2013) lncRNA HOTTIP / HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology 59(3):911–923

    Google Scholar 

  227. Poliseno L et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301):1033–1038

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Eissmann M et al (2012) Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol 9(8):1076–1087

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Nakagawa S et al (2012) Malat1 is not an essential component of nuclear speckles in mice. RNA 18(8):1487–1499

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Mitsuya K et al (1999) LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum Mol Genet 8(7):1209–1217

    CAS  PubMed  Google Scholar 

  231. Monnier P et al (2013) H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc Natl Acad Sci U S A 110(51):20693–20698

    CAS  PubMed Central  PubMed  Google Scholar 

  232. Tsai MC et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693

    CAS  PubMed Central  PubMed  Google Scholar 

  233. He X et al (2014) The long non-coding RNA HOTAIR is upregulated in endometrial carcinoma and correlates with poor prognosis. Int J Mol Med 33(2):325–332

    CAS  PubMed  Google Scholar 

  234. Li CH, Chen Y (2013) Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol 45(8):1895–1910

    CAS  PubMed  Google Scholar 

  235. Zhou Y, Zhang X, Klibanski A (2012) MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48(3):R45–R53

    CAS  PubMed Central  PubMed  Google Scholar 

  236. Wylie AA et al (2000) Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res 10(11):1711–1718

    CAS  PubMed Central  PubMed  Google Scholar 

  237. Brown CJ et al (1991) Localization of the X inactivation centre on the human X chromosome in Xq13. Nature 349(6304):82–84

    CAS  PubMed  Google Scholar 

  238. Engreitz JM et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341(6147):1237973

    PubMed Central  PubMed  Google Scholar 

  239. Cusanelli E, Romero CA, Chartrand P (2013) Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Mol Cell 51(6):780–791

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Our studies on epigenetic in urothelial carcinoma are supported by a fellowship of the Bodossaki foundation to E.A.K. a young investigator grant of the research commission of the Medical Faculty of the Heinrich Heine University to M.J.H and a grant of the Deutsche Forschungsgemeinschaft to G.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang A. Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schulz, W.A., Koutsogiannouli, E.A., Niegisch, G., Hoffmann, M.J. (2015). Epigenetics of Urothelial Carcinoma. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics