Skip to main content

Human Tumor Xenografts in Mouse as a Model for Evaluating Therapeutic Efficacy of Monoclonal Antibodies or Antibody-Drug Conjugate Targeting Receptor Tyrosine Kinases

  • Protocol
  • First Online:
Receptor Tyrosine Kinases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1233))

Abstract

Targeting receptor tyrosine kinases by therapeutic monoclonal antibodies and antibody-drug conjugates has met with tremendous success in clinical oncology. Currently, numerous therapeutic monoclonal antibodies are under preclinical development. The potential for moving candidate antibodies into clinical trials relies heavily on therapeutic efficacy validated by human tumor xenografts in mice. Here we describe methods used to determine therapeutic efficacy of monoclonal antibodies or antibody-drug conjugates specific to human receptor tyrosine kinase using human tumor xenografts in mice as the model. The end point of the study is to determine whether treatment of tumor-bearing mice with a monoclonal antibody or antibody-drug conjugates results in significant delay of tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287

    Article  PubMed  CAS  Google Scholar 

  2. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L (2011) Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 9:16–32

    Article  PubMed  Google Scholar 

  3. Merchant M, Ma X, Maun HR, Zheng Z, Peng J, Romero M et al (2013) Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc Natl Acad Sci U S A 110:2987–2996

    Article  Google Scholar 

  4. O'Toole JM, Rabenau KE, Burns K, Lu D, Mangalampalli V, Balderes P et al (2006) Therapeutic implications of a human neutralizing antibody to the macrophage-stimulating protein receptor tyrosine kinase (RON), a c-MET family member. Cancer Res 66:9162–9170

    Article  PubMed  Google Scholar 

  5. Allard B, Pommey S, Smyth MJ, Stagg J (2013) Targeting CD73 enhances the anti-tumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res 19:5626–5635

    Article  PubMed  CAS  Google Scholar 

  6. Mirschberger C, Schiller CB, Schräml M, Dimoudis N, Friess T, Gerdes CA et al (2013) RG7116, a therapeutic antibody that binds the inactive HER3 receptor and is optimized for immune effector activation. Cancer Res 73:5183–5194

    Article  PubMed  CAS  Google Scholar 

  7. Siu LL, Shapiro JD, Jonker DJ, Karapetis CS, Zalcberg JR, Simes J et al (2013) Phase III randomized, placebo-controlled study of cetuximab plus brivanib alaninate versus cetuximab plus placebo in patients with metastatic, chemotherapy-refractory, wild-type K-RAS colorectal carcinoma: the NCIC Clinical Trials Group and AGITG CO.20 Trial. J Clin Oncol 31:2477–2484

    Article  PubMed  CAS  Google Scholar 

  8. Yao HP, Zhou YQ, Ma Q, Guin S, Padhye SS, Zhang RW et al (2011) The monoclonal antibody Zt/f2 targeting RON receptor tyrosine kinase as potential therapeutics against tumor growth-mediated by colon cancer cells. Mol Cancer 10:82–92

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Hurvitz SA, Dirix L, Kocsis J, Bianchi GV, Lu J, Vinholes J et al (2013) Phase II randomized study of trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 31:1157–1163

    Article  PubMed  CAS  Google Scholar 

  10. LoRusso PM, Weiss D, Guardino E, Girish S, Sliwkowski MX (2011) Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res 17:6437–6447

    Article  PubMed  CAS  Google Scholar 

  11. Mullard A (2013) Maturing antibody-drug conjugate pipeline hits 30. Nat Rev Drug Discov 12:329–332

    Article  PubMed  CAS  Google Scholar 

  12. Deng C, Pan B, O'Connor OA (2013) Brentuximab vedotin. Clin Cancer Res 19:22–27

    Article  PubMed  CAS  Google Scholar 

  13. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367:1783–1791

    Article  PubMed  CAS  Google Scholar 

  14. Bianco R, Daniele G, Ciardiello F, Tortora G (2005) Monoclonal antibodies targeting the epidermal growth factor receptor. Curr Drug Targets 6:275–287

    Article  PubMed  CAS  Google Scholar 

  15. Schmitz KR, Bagchi A, Roovers RC, van Bergen en Henegouwen PM, van Ferguson KM (2013) Structural evaluation of EGFR inhibition mechanisms for nanobodies/VHH domains. Structure 21:1214–1224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Belleudi F, Marra E, Mazzetta F, Fattore L, Giovagnoli MR, Mancini R et al (2012) Monoclonal antibody-induced ErbB3 recept internalization and degradation inhibits growth and migration of human melanoma cells. Cell Cycle 11:1455–1467

    Article  PubMed  CAS  Google Scholar 

  17. Teicher BA (2006) Tumor models for efficacy determination. Mol Cancer Ther 5:2435–2443

    Article  PubMed  CAS  Google Scholar 

  18. Gillet JP, Varma S, Gottesman MM (2013) The clinical relevance of cancer cell lines. J Natl Cancer Inst 105:452–458

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM et al (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9:338–350

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS (2011) Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer 11:135–141

    Article  PubMed  CAS  Google Scholar 

  21. Zou HY, Li Q, Lee JH, Arango ME, Burgess K, Qiu M et al (2012) Sensitivity of selected human tumor models to PF-04217903, a novel selective c-Met kinase inhibitor. Mol Cancer Ther 11:1036–1047

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the assistance of Ms. Susan Denney (Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX) in editing this manuscript.

Grant Support: This work was supported in part by NIH grant R01 CA91980, funds from the Amarillo Area Foundation, and Subproject #2011ZZ01 from State Key Laboratory for Diagnosis & Treatment of Infectious Diseases at First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P. R. China (M.H. Wang). This work also is supported by Projects #WKJ-ZJ-13 and #2014C33204 from Zhejiang Major Medical Health and Science Technology Foundation of China (H.P. Yao). R. Zhang was supported by NIH grants R01 CA112029 and CA121211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Feng, L., Wang, W., Yao, HP., Zhou, J., Zhang, R., Wang, MH. (2015). Human Tumor Xenografts in Mouse as a Model for Evaluating Therapeutic Efficacy of Monoclonal Antibodies or Antibody-Drug Conjugate Targeting Receptor Tyrosine Kinases. In: Germano, S. (eds) Receptor Tyrosine Kinases. Methods in Molecular Biology, vol 1233. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1789-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1789-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1788-4

  • Online ISBN: 978-1-4939-1789-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics