Skip to main content

Analysis of Circadian Rhythms in Embryonic Stem Cells

  • Protocol
  • First Online:
Book cover Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1235))

Abstract

Recent attention on the early development of circadian rhythms has yielded several avenues of potential study regarding molecular and physiological rhythms in embryonic stem cells (ESCs) and their derivatives. While general guidelines of experimental design are—as always—applicable, there are certain idiosyncrasies with respect to experiments involving circadian rhythms that will be addressed. ESCs provide a number of challenges to the circadian biologist: growth rates are normally much higher than in established cell culture systems, the cells’ innate drive towards differentiation and the lack of known synchronizing input pathways are a few examples. Some of these challenges can be addressed post hoc, such as normalization to total RNA or protein for transcript abundance studies. Most others, as outlined here, require special handling of the samples before and during experimentation in order to preserve any potential circadian oscillation that is present. Failure to do so may result in a disruption of endogenous oscillation(s) or, potentially worse, generation of an artificial oscillation that has no biological basis. This chapter begins with cultured ESCs, derived from primary blastocysts or in the form of cell lines, and outlines two methods of measuring circadian rhythms: the 2DG method of measuring glucose uptake (Sokoloff et al. J Neurochem 28:897–916, 1977) and real-time measurement of molecular rhythms using transgenic bioluminescence (Yoo et al. Proc Natl Acad Sci U S A 101:5339–5346, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55:16–54

    Article  CAS  PubMed  Google Scholar 

  2. Bell-Pedersen D, Cassone VM, Earnest DJ et al (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Pittendrigh CS (1960) Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol 25:159–184

    Article  CAS  PubMed  Google Scholar 

  4. Pittendrigh CS (1981) Circadian systems: entrainment. In: Aschoff J (ed) Biol. Rhythm. Springer, Boston, pp 95–124

    Chapter  Google Scholar 

  5. Pittendrigh CS (1954) On temperature independence in the clock system controlling emergence time in Drosophila. Proc Natl Acad Sci U S A 40:1018–1029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Buhr ED, Takahashi JS (2013) Molecular components of the Mammalian circadian clock. Handb Exp Pharmacol (217):3–27. doi:10.1007/978-3-642-25950-0_1

  7. Paulose JK, Rucker EB, Cassone VM (2012) Toward the beginning of time: circadian rhythms in metabolism precede rhythms in clock gene expression in mouse embryonic stem cells. PLoS One 7:e49555. doi:10.1371/journal.pone.0049555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Guido ME, Garbarino-Pico E, Contin MA et al (2004) Circadian regulation of phospholipid biosynthesis in chick retinal ganglion cells. ARVO Meet Abstr 45:3666

    Google Scholar 

  9. Sládek M, Sumová A (2013) Entrainment of spontaneously hypertensive rat fibroblasts by temperature cycles. PLoS One 8:e77010. doi:10.1371/journal.pone.0077010

    Article  PubMed Central  PubMed  Google Scholar 

  10. Schwartz WJ, Gainer H (1977) Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker. Science 197:1089–1091

    Article  CAS  PubMed  Google Scholar 

  11. Sokoloff L, Reivich M, Kennedy C et al (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  CAS  PubMed  Google Scholar 

  12. Earnest DJ, Liang FQ, Ratcliff M et al (1999) Immortal time: circadian clock properties of rat suprachiasmatic cell lines. Science 283:693–695

    Article  CAS  PubMed  Google Scholar 

  13. Paulose JK, Peters JL, Karaganis SP et al (2009) Pineal melatonin acts as a circadian zeitgeber and growth factor in chick astrocytes. J Pineal Res 46:286–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hastings JW, Sweeney BM (1958) A persistent diurnal rhythm of luminescence in Gonyaulax polyedra. Biol Bull 115:440–458

    Article  Google Scholar 

  15. Yamazaki S, Numano R, Abe M et al (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  CAS  PubMed  Google Scholar 

  16. Yoo S-HH, Yamazaki S, Lowrey PL et al (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101:5339–5346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yagita K, Horie K, Koinuma S et al (2010) Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. Proc Natl Acad Sci U S A 107:3846–3851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kowalska E, Moriggi E, Bauer C et al (2010) The circadian clock starts ticking at a developmentally early stage. J Biol Rhythms 25:442–449

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent M. Cassone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Paulose, J.K., Rucker, E.B., Cassone, V.M. (2015). Analysis of Circadian Rhythms in Embryonic Stem Cells. In: Rich, I. (eds) Stem Cell Protocols. Methods in Molecular Biology, vol 1235. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1785-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1785-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1784-6

  • Online ISBN: 978-1-4939-1785-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics