Skip to main content

Measuring the Aging Process in Stem Cells

  • Protocol
  • First Online:
Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1235))

Abstract

Stem cells persist in replenishing functional mature cells throughout life by self-renewal and multilineage differentiation. Hematopoietic stem cells (HSCs) are among the best-characterized and understood stem cells, and they are responsible for the life-long production of all lineages of blood cells. HSCs are a heterogeneous population containing lymphoid-biased, myeloid-biased, and balanced subsets. HSCs undergo age-associated phenotypic and functional changes, and the composition of the HSC pool alters with aging. HSCs and their lineage-biased subfractions can be identified and analyzed by flow cytometry based on cell surface makers. Fluorescence-activated cell sorting (FACS) enables the isolation and purification of HSCs that greatly facilitates the mechanistic study of HSCs and their aging process at both cellular and molecular levels. The mouse model has been extensively used in HSC aging study. Bone marrow cells are isolated from young and old mice and stained with fluorescence-conjugated antibodies specific for differentiated and stem cells. HSCs are selected based on the negative expression of lineage markers and positive selection for several sets of stem cell markers. Lineage-biased HSCs can be further distinguished by the level of SLAM/CD150 expression and the extent of Hoechst efflux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu L, Rando TA (2011) Manifestations and mechanisms of stem cell aging. J Cell Biol 193:257–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Beerman I, Maloney WJ, Weissmann IL et al (2010) Stem cells and the aging hematopoietic system. Curr Opin Immunol 22:500–506

    Article  CAS  PubMed  Google Scholar 

  3. Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–1086

    Article  CAS  PubMed  Google Scholar 

  4. Geiger H, de Haan G, Florian MC (2013) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13:376–389

    Article  CAS  PubMed  Google Scholar 

  5. Morrison SJ, Wandycz AM, Akashi K et al (1996) The aging of hematopoietic stem cells. Nat Med 2:1011–1016

    Article  CAS  PubMed  Google Scholar 

  6. de Haan G, Van Zant G (1999) Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood 93:3294–3301

    PubMed  Google Scholar 

  7. Sudo K, Ema H, Morita Y et al (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192:1273–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Geiger H, True JM, de Haan G et al (2001) Age- and stage-specific regulation patterns in the hematopoietic stem cell hierarchy. Blood 98:2966–2972

    Article  CAS  PubMed  Google Scholar 

  9. Henckaerts E, Geiger H, Langer JC et al (2002) Genetically determined variation in the number of phenotypically defined hematopoietic progenitor and stem cells and in their response to early-acting cytokines. Blood 99:3947–3954

    Article  CAS  PubMed  Google Scholar 

  10. Dykstra B, Olthof S, Schreuder J et al (2011) Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 208:2691–2703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Levi BP, Morrison SJ (2008) Stem cells use distinct self-renewal programs at different ages. Cold Spring Harbor Symp Quant Biol 73:539–553

    Article  CAS  PubMed  Google Scholar 

  12. Kim M, Moon HB, Spangrude GJ (2003) Major age-related changes of mouse hematopoietic stem/progenitor cells. Ann N Y Acad Sci 996:195–208

    Article  PubMed  Google Scholar 

  13. Xing Z, Ryan MA, Daria D et al (2006) Increased hematopoietic stem cell mobilization in aged mice. Blood 108:2190–2197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Liang Y, Van Zant G, Szilvassy SJ (2005) Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106:1479–1487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Florian MC, Dorr K, Niebel A et al (2012) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10:520–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Muller-Sieburg CE, Cho RH, Karlsson L et al (2004) Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103:4111–4118

    Article  CAS  PubMed  Google Scholar 

  17. Beerman I, Bhattacharya D, Zandi S et al (2010) Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A 107:5465–5470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Muller-Sieburg CE, Sieburg HB, Bernitz JM et al (2012) Stem cell heterogeneity: implications for aging and regenerative medicine. Blood 119:3900–3907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wagner W, Horn P, Bork S et al (2008) Aging of hematopoietic stem cells is regulated by the stem cell niche. Exp Gerontol 43:974–980

    Article  CAS  PubMed  Google Scholar 

  20. Mayack SR, Shadrach JL, Kim FS et al (2010) Systemic signals regulate ageing and rejuvenation of blood stem cell niches. Nature 463:495–500

    Article  CAS  PubMed  Google Scholar 

  21. Oakley EJ, Van Zant G (2010) Age-related changes in niche cells influence hematopoietic stem cell function. Cell Stem Cell 6:93–94

    Article  CAS  PubMed  Google Scholar 

  22. Rossi DJ, Bryder D, Seita J et al (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447:725–729

    Article  CAS  PubMed  Google Scholar 

  23. Garinis GA, van der Horst GT, Vijg J et al (2008) DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol 10:1241–1247

    Article  CAS  PubMed  Google Scholar 

  24. Rossi DJ, Seita J, Czechowicz A et al (2007) Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell Cycle 6:2371–2376

    Article  CAS  PubMed  Google Scholar 

  25. Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464:520–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Yahata T, Takanashi T, Muguruma Y et al (2011) Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118:2941–2950

    Article  CAS  PubMed  Google Scholar 

  27. Garrison BS, Rossi DJ (2012) Reactive oxygen species resulting from mitochondrial mutation diminishes stem and progenitor cell function. Cell Metab 15:2–3

    Article  CAS  PubMed  Google Scholar 

  28. Janzen V, Forkert R, Fleming HE et al (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443:421–426

    CAS  PubMed  Google Scholar 

  29. Xiao N, Jani K, Morgan K et al (2012) Hematopoietic stem cells lacking Ott1 display aspects associated with aging and are unable to maintain quiescence during proliferative stress. Blood 119:4898–4907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Rossi DJ, Bryder D, Weissman IL (2007) Hematopoietic stem cell aging: mechanism and consequence. Exp Gerontol 42:385–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chen J, Astle CM, Harrison DE (2000) Genetic regulation of primitive hematopoietic stem cell senescence. Exp Hematol 28:442–450

    Article  CAS  PubMed  Google Scholar 

  32. Wagner W, Bork S, Horn P et al (2009) Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 4:e5846

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wang J, Sun Q, Morita Y et al (2012) A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 148:1001–1014

    Article  CAS  PubMed  Google Scholar 

  34. Beerman I, Bock C, Garrison BS et al (2013) Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12:413–425

    Article  CAS  PubMed  Google Scholar 

  35. Rossi DJ, Bryder D, Zahn JM et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102:9194–9199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Chambers SM, Shaw CA, Gatza C et al (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5:e201

    Article  PubMed Central  PubMed  Google Scholar 

  37. Tadokoro Y, Ema H, Okano M et al (2007) De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med 204:715–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Okada S, Nakauchi H, Nagayoshi K et al (1992) In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80:3044–3050

    CAS  PubMed  Google Scholar 

  39. Adolfsson J, Borge OJ, Bryder D et al (2001) Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15:659–669

    Article  CAS  PubMed  Google Scholar 

  40. Kiel MJ, Yilmaz OH, Iwashita T et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  CAS  PubMed  Google Scholar 

  41. Yilmaz OH, Kiel MJ, Morrison SJ (2006) SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107:924–930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Goodell MA, Brose K, Paradis G et al (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  CAS  PubMed  Google Scholar 

  43. Challen GA, Boles NC, Chambers SM et al (2010) Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell 6:265–278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Morita Y, Ema H, Nakauchi H (2010) Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med 207:1173–1182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Oguro H, Ding L, Morrison SJ (2013) SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13:102–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Doulatov S, Notta F, Laurenti E et al (2012) Hematopoiesis: a human perspective. Cell Stem Cell 10:120–136

    Article  CAS  PubMed  Google Scholar 

  47. Kuranda K, Vargaftig J, de la Rochere P et al (2011) Age-related changes in human hematopoietic stem/progenitor cells. Aging Cell 10:542–546

    Article  CAS  PubMed  Google Scholar 

  48. Pang WW, Price EA, Sahoo D et al (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A 108:20012–20017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Vaziri H, Dragowska W, Allsopp RC et al (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci U S A 91:9857–9860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Notta F, Doulatov S, Laurenti E et al (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333:218–221

    Article  CAS  PubMed  Google Scholar 

  51. Larochelle A, Savona M, Wiggins M et al (2011) Human and rhesus macaque hematopoietic stem cells cannot be purified based only on SLAM family markers. Blood 117:1550–1554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Goodrick CL (1975) Life-span and the inheritance of longevity of inbred mice. J Gerontol 30:257–263

    Article  CAS  PubMed  Google Scholar 

  53. Rowlatt C, Chesterman FC, Sheriff MU (1976) Lifespan, age changes and tumour incidence in an ageing C57BL mouse colony. Lab Anim 10:419–442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Edward P. Evans Foundation (to G.V.Z.) and The National Center for Advancing Translational Sciences, National Institutes of Health, through grant number KL2TR000116 (to Y. L.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

We acknowledge Jennifer F. Rogers for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, Y., Van Zant, G., Liang, Y. (2015). Measuring the Aging Process in Stem Cells. In: Rich, I. (eds) Stem Cell Protocols. Methods in Molecular Biology, vol 1235. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1785-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1785-3_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1784-6

  • Online ISBN: 978-1-4939-1785-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics