Sepsis pp 57-64 | Cite as

Bacterial and Fungal DNA Extraction from Positive Blood Culture Bottles: A Manual and an Automated Protocol

  • Minna MäkiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1237)


When adapting a gene amplification-based method in a routine sepsis diagnostics using a blood culture sample as a specimen type, a prerequisite for a successful and sensitive downstream analysis is the efficient DNA extraction step. In recent years, a number of in-house and commercial DNA extraction solutions have become available. Careful evaluation in respect to cell wall disruption of various microbes and subsequent recovery of microbial DNA without putative gene amplification inhibitors should be conducted prior selecting the most feasible DNA extraction solution for the downstream analysis used. Since gene amplification technologies have been developed to be highly sensitive for a broad range of microbial species, it is also important to confirm that the used sample preparation reagents and materials are bioburden-free to avoid any risks for false-positive result reporting or interference of the diagnostic process. Here, one manual and one automated DNA extraction system feasible for blood culture samples are described.

Key words

Sample preparation Blood culture DNA extraction Fungi Bacteria 


  1. 1.
  2. 2.
  3. 3.
    Fredricks DN, Relman DA (1998) Improved amplification of microbial DNA from blood cultures by removal of the PCR inhibitor sodium polyanetholesulfonate. J Clin Microbiol 36:2810–2816PubMedPubMedCentralGoogle Scholar
  4. 4.
    Maaroufi Y, De Bruyne JM, Duchateau V et al (2004) Early detection and identification of commonly encountered Candida species from simulated blood cultures by using a real-time PCR-based assay. J Mol Diagn 6(2):108–114PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Hindiyeh M, Smollan G, Grossman Z (2011) Rapid detection of blaKPC carbapenemase genes by internally controlled real-time PCR assay using bactec blood culture bottles. J Clin Microbiol 49(7):2480–2484PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Fredricks DN, Smith C, Meier A (2005) Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J Clin Microbiol 43(10): 5122–5128PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Maaroufi Y, Ahariz N, Husson M et al (2004) Comparison of different methods of isolation of DNA of commonly encountered Candida species and its quantitation by using a real-time PCR-based assay. J Clin Microbiol 42(7): 3159–3163PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Dhaliwal A (2013) DNA extraction and purification. Mater Methods 3:191Google Scholar
  9. 9.
    Hogg GM, McKenna JP, Ong G (2008) Rapid detection of methicillin-susceptible and methicillin-resistant Staphylococcus aureus directly from positive BacT/Alert blood culture bottles using real-time polymerase chain reaction: evaluation and comparison of 4 DNA extraction methods. Diagn Microbiol Infect Dis 61(4):446–452PubMedCrossRefGoogle Scholar
  10. 10.
    Metwally L, Fairley DJ, Coyle PV et al (2008) Improving molecular detection of Candida DNA in whole blood: comparison of seven fungal DNA extraction protocols using real-time PCR. J Med Microbiol 57:296–303PubMedCrossRefGoogle Scholar
  11. 11.
    Villumsen S, Pedersen R, Krogfelt KA et al (2010) Expanding the diagnostic use of PCR in leptospirosis: improved method for DNA extraction from blood cultures. PLoS One 5(8): e12095. doi: 10.1371/journal.pone.0012095 PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Regan JF, Furtado MR, Brevnov MG et al (2012) A sample extraction method for faster, more sensitive PCR-based detection of pathogens in blood culture. J Mol Diagn 14(2): 120–129PubMedCrossRefGoogle Scholar
  13. 13.
    Pillet S, Bourlet T, Pozzetto B (2012) Comparative evaluation of the QIAsymphony RGQ system with the easyMAG/R-gene combination for the quantitation of cytomegalovirus DNA load in whole blood. Virol J 9:231PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Laakso S, Kirveskari J, Tissari P (2011) Evaluation of high-throughput PCR and microarray-based assay in conjunction with automated DNA extraction instruments for diagnosis of sepsis. PLoS One 6(11):e26655. doi: 10.1371/journal.pone.0026655 PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Loeffler J, Hebart H, Bialek R et al (1999) Contaminations occurring in fungal PCR assays. J Clin Microbiol 37:1200–1202PubMedPubMedCentralGoogle Scholar
  16. 16.
    Mohammadi T, Reesink HW, Vandenbroucke-Grauls CM et al (2005) Removal of contaminating DNA from commercial nucleic acid extraction kit reagents. J Microbiol Methods 61(2):285–288PubMedCrossRefGoogle Scholar
  17. 17.
    Evans GE, Murdoch DR, Anderson TP et al (2003) Contamination of Qiagen DNA extraction kits with Legionella DNA. J Clin Microbiol 41:3452–3453PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Van der Zee A, Crielaard JW (2002) Qiagen DNA extraction kits for sample preparation for Legionella PCR are not suitable for diagnostic purposes. J Clin Microbiol 40:1126PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Millar BC, Xu J, Moore JE (2002) Risk assessment models and contamination management: implications for broad-range ribosomal DNA PCR as a diagnostic tool in medical bacteriology. J Clin Microbiol 40(5):1575–1580PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tissari P, Zumla A, Tarkka E et al (2010) Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study. Lancet 375:224–230PubMedCrossRefGoogle Scholar
  21. 21.
    Aittakorpi A, Kuusela P, Koukila-Kähkölä P (2012) Accurate and rapid speciation of Candida fungemia by PCR and microarray-based Prove-it™ Sepsis assay. J Clin Microbiol 50(11):3635–3640PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Loonen AJ, Jansz AR, Kreeftenberg H et al (2011) Acceleration of the direct identification of Staphylococcus aureus versus coagulase-negative staphylococci from blood culture material: a comparison of six bacterial DNA extraction methods. Eur J Clin Microbiol Infect Dis 30(3):337–342PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Järvinen AK, Laakso S, Piiparinen P et al (2009) Rapid identification of bacterial pathogens using a PCR- and microarray-based assay. BMC Microbiol 9:161–177PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Loens K, Bergs K, Ursi D et al (2007) Evaluation of NucliSens easyMAG for automated nucleic acid extraction from various clinical specimens. J Clin Microbiol 45(2): 421–425PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Dundas N, Leos NK, Mitui M et al (2008) Comparison of automated nucleic acid extraction methods with manual extraction. J Mol Diagn 10(4):311–316PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Perandin F, Pollara PC, Gargiulo F et al (2009) Performance evaluation of the automated NucliSens easyMAG nucleic acid extraction platform in comparison with QIAamp Mini kit from clinical specimens. Diagn Microbiol Infect Dis 64(2):158–165PubMedCrossRefGoogle Scholar
  27. 27.
    Wiesinger-Mayr H, Jordana-Lluch E, Martró E et al (2011) Establishment of a semi-automated pathogen DNA isolation from whole blood and comparison with commercially available kits. J Microbiol Methods 85(3):206–213PubMedCrossRefGoogle Scholar
  28. 28.
    Tang YW, Sefers SE, Li H (2005) Comparative evaluation of three commercial systems for nucleic acid extraction from urine specimens. J Clin Microbiol 43(9):4830–4833PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Orion Diagnostica OyEspooFinland

Personalised recommendations