Skip to main content
Book cover

Sepsis pp 5–15Cite as

Pathophysiological Aspects of Sepsis: An Overview

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1237))

Abstract

Sepsis is defined as severe systemic inflammation in response to invading pathogens, or an uncontrolled hyperinflammatory response, as mediated by the release of various proinflammatory mediators. Although some patients may die rapidly from septic shock accompanied by an overwhelming systemic inflammatory response syndrome (SIRS) triggered by a highly virulent pathogen, most patients survive the initial phase of sepsis, showing multiple organ damage days or weeks later. These patients often demonstrate signs of immune suppression accompanied by enhanced inflammation. Sepsis is a result of a complex process; there is interaction of various pathways, such as inflammation, immunity, coagulation, as well as the neuroendocrine system. This treatise is an attempt to provide a summary of several key regulatory mechanisms and to present the currently recognized molecular pathways that are involved in the pathogenesis of sepsis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bone RC (1991) The pathogenesis of sepsis. Ann Intern Med 115:457–469

    Article  PubMed  CAS  Google Scholar 

  2. Bone RC, Sprung CL, Sibbald WJ (1992) Definitions for sepsis and organ failure. Crit Care Med 20:724–726

    Article  PubMed  CAS  Google Scholar 

  3. Parrillo JE, Parker MM, Natanson C et al (1990) Septic shock in humans: advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113:227–242

    Article  PubMed  CAS  Google Scholar 

  4. Wang J, Hu Y, Deng WW et al (2009) Negative regulation of Toll-like receptor signaling pathway. Microbes Infect 11:321–327

    Article  PubMed  Google Scholar 

  5. Chuang TH, Ulevitch RJ (2004) Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 5:495–502

    Article  PubMed  CAS  Google Scholar 

  6. Divanovic S, Trompette A, Atabani SF et al (2005) Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol 6:571–578

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. An H, Hou J, Zhou J et al (2008) Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol 9:542–550

    Article  PubMed  CAS  Google Scholar 

  8. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  PubMed  CAS  Google Scholar 

  9. Rouhiainen A, Kuja-Panula J, Wilkman E et al (2004) Regulation of monocyte migration by amphoterin (HMGB1). Blood 104:1174–1182

    Article  PubMed  CAS  Google Scholar 

  10. Zhu XM, Yao YM, Liang HP et al (2009) The effects of high mobility group box-1 protein on splenic dendritic cell maturation in rats. J Interferon Cytokine Res 29:677–686

    Article  PubMed  CAS  Google Scholar 

  11. Huang LF, Yao YM, Zhang LT et al (2009) The effect of mobility group box-1 protein on activity of regulatory cells after thermal injury in rats. Shock 31:322–329

    Article  PubMed  CAS  Google Scholar 

  12. Souza HP, Lima-Salgado T, da Cruz Neto LM (2010) Toll-like receptors in sepsis: a tale still being told. Endocr Metab Immune Disord Drug Targets 10:285–291

    Article  PubMed  CAS  Google Scholar 

  13. Chang KC, Unsinger J, Davis CG et al (2007) Multiple triggers of cell death in sepsis: death receptor and mitochondrial-mediated apoptosis. FASEB J 21:708–719

    Article  PubMed  CAS  Google Scholar 

  14. Prakash PS, Caldwell CC, Lentsch AB et al (2012) Human microparticles generated during sepsis in patients with critical illness are neutrophil-derived and modulate the immune response. J Trauma Acute Care Surg 73:401–406

    Article  PubMed  CAS  Google Scholar 

  15. Andriantsitohaina R, Gaceb A, Vergori L et al (2012) Microparticles as regulators of cardiovascular inflammation. Trends Cardiovasc Med 22:88–92

    Article  PubMed  CAS  Google Scholar 

  16. Ma T, Han L, Gao Y et al (2008) The endoplasmic reticulum stress-mediated apoptosis signal pathway is involved in sepsis-induced abnormal lymphocyte apoptosis. Eur Surg Res 41:219–225

    Article  PubMed  CAS  Google Scholar 

  17. Weber SU, Schewe JC, Lehmann LE et al (2008) Induction of Bim and Bid gene expression during accelerated apoptosis in severe sepsis. Crit Care 12:R128

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schwulst SJ, Muenzer JT, Peck-Palmer OM et al (2008) Bim siRNA decreases lymphocyte apoptosis and improves survival in sepsis. Shock 30:127–134

    PubMed  CAS  Google Scholar 

  19. Jimbo A, Fujita E, Kouroku Y et al (2003) ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation. Exp Cell Res 283:156–166

    Article  PubMed  CAS  Google Scholar 

  20. Oakes SA, Lin SS, Bassik MC (2006) The control of endoplasmic reticulum initiated apoptosis by the BCL-2 family of proteins. Curr Mol Med 6:99–109

    Article  PubMed  CAS  Google Scholar 

  21. Kadowaki N, Ho S, Antonenko S et al (2001) Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J Exp Med 194:863–869

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Pène F, Courtine E, Ouaaz F et al (2009) Toll-like receptors 2 and 4 contribute to sepsis-induced depletion of spleen dendritic cells. Infect Immun 77:5651–5658

    Article  PubMed  PubMed Central  Google Scholar 

  23. Akdis M, Akdis CA (2007) Mechanisms of allergen-specific immunotherapy. J Allergy Clin Immunol 119:780–791

    Article  PubMed  CAS  Google Scholar 

  24. Kamimura D, Bevan MJ (2008) Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection. J Immunol 181:5433–5441

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Zhu XM, Yao FH, Yao YM et al (2012) Endoplasmic reticulum stress and its regulator XBP-1 contributes to dendritic cell maturation and activation induced by high mobility group box-1 protein. Int J Biochem Cell Biol 44:1097–1105

    Article  PubMed  CAS  Google Scholar 

  26. Fujita S, Seino K, Sato K et al (2006) Regulatory dendritic cells act as regulators of acute lethal systemic inflammatory response. Blood 107:3656–3664

    Article  PubMed  CAS  Google Scholar 

  27. Levi M, van der Poll T (2010) Inflammation and coagulation. Crit Care Med 38:S26–S34

    Article  PubMed  CAS  Google Scholar 

  28. Levi M (2010) The coagulant response in sepsis and inflammation. Hamostaseologie 30(10–12):14–16

    Google Scholar 

  29. Weismüller K, Bauer M, Hofer S et al (2010) The neuroendocrine axis and the pathophysiology of sepsis. Anasthesiol Intensivmed Notfallmed Schmerzther 45:574–578

    Article  PubMed  Google Scholar 

  30. Berczi I, Quintanar-Stephano A, Kovacs K (2009) Neuroimmune regulation in immunocompetence, acute illness, and healing. Ann N Y Acad Sci 1153:220–239

    Article  PubMed  CAS  Google Scholar 

  31. Sharshar T, Hopkinson NS, Orlikowski D et al (2005) Science review: the brain in sepsis—culprit and victim. Crit Care 9:37–44

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lang CH, Nystrom G, Frost RA (2008) Beta-adrenergic blockade exacerbates sepsis-induced changes in tumor necrosis factor alpha and interleukin-6 in skeletal muscle and is associated with impaired translation initiation. J Trauma 64:477–486

    Article  PubMed  CAS  Google Scholar 

  33. Wang H, Yu M, Ochani M et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388

    Article  PubMed  CAS  Google Scholar 

  34. Ameri P, Ferone D (2012) Diffuse endocrine system, neuroendocrine tumors and immunity: What’s new? Neuroendocrinology 95:267–276

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by grants from the National Natural Science Foundation (81130035, 81372054, 81071545, 81272089, 81121004), the National Basic Research Program of China (2012CB518102), and the Medical Research Foundation of Chinese PLA (AWS11J008, BWS12J050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Yi Luan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yao, YM., Luan, YY., Zhang, QH., Sheng, ZY. (2015). Pathophysiological Aspects of Sepsis: An Overview. In: Mancini, N. (eds) Sepsis. Methods in Molecular Biology, vol 1237. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1776-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1776-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1775-4

  • Online ISBN: 978-1-4939-1776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics