Sepsis pp 149-211 | Cite as

Host Response Biomarkers in the Diagnosis of Sepsis: A General Overview

  • Marianna Parlato
  • Jean-Marc CavaillonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1237)


Critically ill patients who display a systemic inflammatory response syndrome (SIRS) are prone to develop nosocomial infections. The challenge remains to distinguish as early as possible among SIRS patients those who are developing sepsis. Following a sterile insult, damage-associated molecular patterns (DAMPs) released by damaged tissues and necrotic cells initiate an inflammatory response close to that observed during sepsis. During sepsis, pathogen-associated molecular patterns (PAMPs) trigger the release of host mediators involved in innate immunity and inflammation through identical receptors as DAMPs. In both clinical settings, a compensatory anti-inflammatory response syndrome (CARS) is concomitantly initiated. The exacerbated production of pro- or anti-inflammatory mediators allows their detection in biological fluids and particularly within the bloodstream. Some of these mediators can be used as biomarkers to decipher among the patients those who developed sepsis, and eventually they can be used as prognosis markers. In addition to plasma biomarkers, the analysis of some surface markers on circulating leukocytes or the study of mRNA and miRNA can be helpful. While there is no magic marker, a combination of few biomarkers might offer a high accuracy for diagnosis.

Key words

Diagnosis Acute phase proteins Cytokines 


  1. 1.
    Bone RC, Grodzin CJ, Balk RA (1997) Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 121:235–243Google Scholar
  2. 2.
    Adib-Conquy M, Cavaillon JM (2009) Compensatory anti-inflammatory response syndrome. Thromb Haemost 101:36–47PubMedGoogle Scholar
  3. 3.
    Cavaillon JM, Muñoz C, Fitting C, Misset B, Carlet J (1992) Circulating cytokines: the tip of the iceberg ? Circ Shock 38:145–152PubMedGoogle Scholar
  4. 4.
    Pierrakos C, Vincent JL (2010) Sepsis biomarkers: a review. Crit Care 14:R15PubMedPubMedCentralGoogle Scholar
  5. 5.
    Kumar A, Roberts D, Wood KE, Light B, Parrillo JE et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596PubMedGoogle Scholar
  6. 6.
    Nobre V, Harbarth S, Graf JD, Rohner P, Pugin J (2008) Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med 177:498–505PubMedGoogle Scholar
  7. 7.
    Vincent JL, Beumier M (2013) Diagnostic and prognostic markers in sepsis. Expert Rev Anti Infect Ther 11:265–275PubMedGoogle Scholar
  8. 8.
    Reinhart K, Wiegand-Lohnert C, Grimminger F, Kaul M, Withington S et al (1996) Assessment of the safety and efficacy of the monoclonal anti-tumor necrosis factor antibody-fragment, MAK 195F, in patients with sepsis and septic shock: a multicenter, randomized, placebo-controlled, dose-ranging study. Crit Care Med 24:733–742PubMedGoogle Scholar
  9. 9.
    Tillet W, Francis T (1930) Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J Exp Med 52:561–571Google Scholar
  10. 10.
    McCarty M (1947) The occurrence during acute infection of a protein not normally present in the blood. IV Crystallization of the C-reactive protein. J Exp Med 85:491–498PubMedPubMedCentralGoogle Scholar
  11. 11.
    Osmand AP, Friedenson B, Gewurz H, Painter RH, Hofmann T et al (1977) Characterization of C-reactive protein and the complement subcomponent C1t as homologous proteins displaying cyclic pentameric symmetry (pentraxins). Proc Natl Acad Sci U S A 74:739–743PubMedPubMedCentralGoogle Scholar
  12. 12.
    Meynaar IA, Droog W, Batstra M, Vreede R, Herbrink P (2011) In critically Ill patients, serum procalcitonin is more useful in differentiating between sepsis and SIRS than CRP, Il-6, or LBP. Crit Care Res Pract 2011:594645PubMedPubMedCentralGoogle Scholar
  13. 13.
    Fitting C, Parlato M, Adib-Conquy M, Memain N, Philippart F et al (2012) DNAemia detection by multiplex PCR and biomarkers for infection in systemic inflammatory response syndrome patients. PLoS One 7:e38916PubMedPubMedCentralGoogle Scholar
  14. 14.
    Su L, Han B, Liu C, Liang L, Jiang Z et al (2012) Value of soluble TREM-1, procalcitonin, and C-reactive protein serum levels as biomarkers for detecting bacteremia among sepsis patients with new fever in intensive care units: a prospective cohort study. BMC Infect Dis 12:157PubMedPubMedCentralGoogle Scholar
  15. 15.
    Sierra R, Rello J, Bailen MA, Benitez E, Gordillo A et al (2004) C-reactive protein used as an early indicator of infection in patients with systemic inflammatory response syndrome. Intensive Care Med 30:2038–2045PubMedGoogle Scholar
  16. 16.
    Meisner M, Tschaikowsky K, Palmaers T, Schmidt J (1999) Comparison of procalcitonin (PCT) and C-reactive protein (CRP) plasma concentrations at different SOFA scores during the course of sepsis and MODS. Crit Care 3:45–50PubMedPubMedCentralGoogle Scholar
  17. 17.
    Ohlin A, Bjorkqvist M, Montgomery SM, Schollin J (2010) Clinical signs and CRP values associated with blood culture results in neonates evaluated for suspected sepsis. Acta Paediatr 99:1635–1640PubMedGoogle Scholar
  18. 18.
    Povoa P, Coelho L, Almeida E, Fernandes A, Mealha R et al (2005) C-reactive protein as a marker of infection in critically ill patients. Clin Microbiol Infect 11:101–108PubMedGoogle Scholar
  19. 19.
    Tsalik EL, Jaggers LB, Glickman SW, Langley RJ, van Velkinburgh JC et al (2012) Discriminative value of inflammatory biomarkers for suspected sepsis. J Emerg Med 43:97–106PubMedPubMedCentralGoogle Scholar
  20. 20.
    Tschaikowsky K, Hedwig-Geissing M, Schmidt J, Braun GG (2011) Lipopolysaccharide-binding protein for monitoring of postoperative sepsis: complemental to C-reactive protein or redundant? PLoS One 6:e23615PubMedPubMedCentralGoogle Scholar
  21. 21.
    Tschaikowsky K, Hedwig-Geissing M, Braun GG, Radespiel-Troeger M (2011) Predictive value of procalcitonin, interleukin-6, and C-reactive protein for survival in postoperative patients with severe sepsis. J Crit Care 26:54–64PubMedGoogle Scholar
  22. 22.
    Schmit X, Vincent JL (2008) The time course of blood C-reactive protein concentrations in relation to the response to initial antimicrobial therapy in patients with sepsis. Infection 36:213–219PubMedGoogle Scholar
  23. 23.
    Boraey N, Sheneef A, Mohammad M, Yousef L (2012) Procalcitonin and C- reactive protein as diagnostic markers of neonatal sepsis. Aust J Basic Appl Sci 6:108–114Google Scholar
  24. 24.
    Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J (2004) Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis 39:206–217PubMedGoogle Scholar
  25. 25.
    Yu CW, Juan LI, Wu MH, Shen CJ, Wu JY et al (2013) Systematic review and meta-analysis of the diagnostic accuracy of procalcitonin, C-reactive protein and white blood cell count for suspected acute appendicitis. Br J Surg 100:322–329PubMedGoogle Scholar
  26. 26.
    Yu CW, Juan LI, Hsu SC, Chen CK, Wu CW et al (2013) Role of procalcitonin in the diagnosis of infective endocarditis: a meta-analysis. Am J Emerg Med 31:935–941PubMedGoogle Scholar
  27. 27.
    Lyu YX, Yu XC, Zhu MY (2013) Comparison of the diagnostic value of procalcitonin and C-reactive protein after hematopoietic stem cell transplantation: a systematic review and meta-analysis. Transpl Infect Dis 15:290–299PubMedGoogle Scholar
  28. 28.
    Kofoed K, Andersen O, Kronborg G, Tvede M, Petersen J et al (2007) Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study. Crit Care 11:R38PubMedPubMedCentralGoogle Scholar
  29. 29.
    Chan T, Gu F (2011) Early diagnosis of sepsis using serum biomarkers. Expert Rev Mol Diagn 11:487–496PubMedGoogle Scholar
  30. 30.
    Uhlar CM, Whitehead AS (1999) Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem 265:501–523PubMedGoogle Scholar
  31. 31.
    Cicarelli DD, Vieira JE, Bensenor FE (2008) Comparison of C-reactive protein and serum amyloid a protein in septic shock patients. Mediators Inflamm 2008:631414PubMedPubMedCentralGoogle Scholar
  32. 32.
    Casl MT, Rogina B, Glojnaric-Spasic I, Minigo H, Planinc-Peraica A et al (1994) The differential diagnostic capacity of serum amyloid A protein between infectious and non-infectious febrile episodes of neutropenic patients with acute leukemia. Leuk Res 18:665–670PubMedGoogle Scholar
  33. 33.
    Arnon S, Litmanovitz I, Regev RH, Bauer S, Shainkin-Kestenbaum R et al (2007) Serum amyloid A: an early and accurate marker of neonatal early-onset sepsis. J Perinatol 27:297–302PubMedGoogle Scholar
  34. 34.
    Enguix A, Rey C, Concha A, Medina A, Coto D et al (2001) Comparison of procalcitonin with C-reactive protein and serum amyloid for the early diagnosis of bacterial sepsis in critically ill neonates and children. Intensive Care Med 27:211–215PubMedGoogle Scholar
  35. 35.
    Ucar B, Yildiz B, Aksit MA, Yarar C, Colak O et al (2008) Serum amyloid A, procalcitonin, tumor necrosis factor-alpha, and interleukin-1beta levels in neonatal late-onset sepsis. Mediators Inflamm 2008:737141PubMedPubMedCentralGoogle Scholar
  36. 36.
    Edgar JD, Gabriel V, Gallimore JR, McMillan SA, Grant J (2010) A prospective study of the sensitivity, specificity and diagnostic performance of soluble intercellular adhesion molecule 1, highly sensitive C-reactive protein, soluble E-selectin and serum amyloid A in the diagnosis of neonatal infection. BMC Pediatr 10:22PubMedPubMedCentralGoogle Scholar
  37. 37.
    Lannergard A, Viberg A, Cars O, Karlsson MO, Sandstrom M et al (2009) The time course of body temperature, serum amyloid A protein, C-reactive protein and interleukin-6 in patients with bacterial infection during the initial 3 days of antibiotic therapy. Scand J Infect Dis 41:663–671PubMedGoogle Scholar
  38. 38.
    Smith K, Bigham M (2011) Biomarkers in pediatric sepsis. Open Inflamm J 4:24–30Google Scholar
  39. 39.
    Prucha M, Herold I, Zazula R, Dubska L, Dostal M et al (2003) Significance of lipopolysaccharide-binding protein (an acute phase protein) in monitoring critically ill patients. Crit Care 7:R154–R159PubMedPubMedCentralGoogle Scholar
  40. 40.
    Sakr Y, Burgett U, Nacul FE, Reinhart K, Brunkhorst F (2008) Lipopolysaccharide binding protein in a surgical intensive care unit: a marker of sepsis? Crit Care Med 36:2014–2022PubMedGoogle Scholar
  41. 41.
    Gaini S, Koldkjaer OG, Pedersen C, Pedersen SS (2006) Procalcitonin, lipopolysaccharide-binding protein, interleukin-6 and C-reactive protein in community-acquired infections and sepsis: a prospective study. Crit Care 10:R53PubMedPubMedCentralGoogle Scholar
  42. 42.
    Watkin RW, Harper LV, Vernallis AB, Lang S, Lambert PA et al (2007) Pro-inflammatory cytokines IL6, TNF-alpha, IL1beta, procalcitonin, lipopolysaccharide binding protein and C-reactive protein in infective endocarditis. J Infect 55:220–225PubMedGoogle Scholar
  43. 43.
    Albillos A, de-la-Hera A, Alvarez-Mon M (2004) Serum lipopolysaccharide-binding protein prediction of severe bacterial infection in cirrhotic patients with ascites. Lancet 363:1608–1610PubMedGoogle Scholar
  44. 44.
    Porcel JM, Vives M, Cao G, Bielsa S, Ruiz-Gonzalez A et al (2009) Biomarkers of infection for the differential diagnosis of pleural effusions. Eur Respir J 34:1383–1389PubMedGoogle Scholar
  45. 45.
    Muller B, Peri G, Doni A, Torri V, Landmann R et al (2001) Circulating levels of the long pentraxin PTX3 correlate with severity of infection in critically ill patients. Crit Care Med 29:1404–1407PubMedGoogle Scholar
  46. 46.
    Vänskä M, Koivula I, Hamalainen S, Pulkki K, Nousiainen T et al (2011) High pentraxin 3 level predicts septic shock and bacteremia at the onset of febrile neutropenia after intensive chemotherapy of hematologic patients. Haematologica 96:1385–1389PubMedPubMedCentralGoogle Scholar
  47. 47.
    Uusitalo-Seppala R, Huttunen R, Aittoniemi J, Koskinen P, Leino A et al (2013) Pentraxin 3 (PTX3) is associated with severe sepsis and fatal disease in emergency room patients with suspected infection: a prospective cohort study. PLoS One 8:e53661PubMedPubMedCentralGoogle Scholar
  48. 48.
    Mauri T, Bellani G, Patroniti N, Coppadoro A, Peri G et al (2010) Persisting high levels of plasma pentraxin 3 over the first days after severe sepsis and septic shock onset are associated with mortality. Intensive Care Med 36:621–629PubMedGoogle Scholar
  49. 49.
    Huttunen R, Hurme M, Aittoniemi J, Huhtala H, Vuento R et al (2011) High plasma level of long pentraxin 3 (PTX3) is associated with fatal disease in bacteremic patients: a prospective cohort study. PLoS One 6:e17653PubMedPubMedCentralGoogle Scholar
  50. 50.
    Okorie ON, Dellinger P (2011) Lactate: biomarker and potential therapeutic target. Crit Care Clin 27:299–326PubMedGoogle Scholar
  51. 51.
    Douzinas EE, Tsidemiadou PD, Pitaridis MT, Andrianakis I, Bobota-Chloraki A et al (1997) The regional production of cytokines and lactate in sepsis-related multiple organ failure. Am J Respir Crit Care Med 155:53–59PubMedGoogle Scholar
  52. 52.
    Hack CE, Nuijens JH, Strack van Schijndel RJ, Abbink JJ, Eerenberg AJ et al (1990) A model for the interplay of inflammatory mediators in sepsis–a study in 48 patients. Intensive Care Med 16(Suppl 3):S187–S191PubMedGoogle Scholar
  53. 53.
    Gogos CA, Lekkou A, Papageorgiou O, Siagris D, Skoutelis A et al (2003) Clinical prognostic markers in patients with severe sepsis: a prospective analysis of 139 consecutive cases. J Infect 47:300–306PubMedGoogle Scholar
  54. 54.
    Trzeciak S, Dellinger RP, Chansky ME, Arnold RC, Schorr C et al (2007) Serum lactate as a predictor of mortality in patients with infection. Intensive Care Med 33:970–977PubMedGoogle Scholar
  55. 55.
    Nguyen HB, Rivers EP, Knoblich BP, Jacobsen G, Muzzin A et al (2004) Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 32:1637–1642PubMedGoogle Scholar
  56. 56.
    Marty P, Roquilly A, Vallee F, Luzi A, Ferre F et al (2013) Lactate clearance for death prediction in severe sepsis or septic shock patients during the first 24 hours in intensive care unit: an observational study. Ann Intensive Care 3:3PubMedPubMedCentralGoogle Scholar
  57. 57.
    Jeng JC, Jablonski K, Bridgeman A, Jordan MH (2002) Serum lactate, not base deficit, rapidly predicts survival after major burns. Burns 28:161–166PubMedGoogle Scholar
  58. 58.
    Manikis P, Jankowski S, Zhang H, Kahn RJ, Vincent JL (1995) Correlation of serial blood lactate levels to organ failure and mortality after trauma. Am J Emerg Med 13:619–622PubMedGoogle Scholar
  59. 59.
    McNelis J, Marini CP, Jurkiewicz A, Szomstein S, Simms HH et al (2001) Prolonged lactate clearance is associated with increased mortality in the surgical intensive care unit. Am J Surg 182:481–485PubMedGoogle Scholar
  60. 60.
    del Portal DA, Shofer F, Mikkelsen ME, Dorsey PJ Jr, Gaieski DF et al (2010) Emergency department lactate is associated with mortality in older adults admitted with and without infections. Acad Emerg Med 17:260–268PubMedGoogle Scholar
  61. 61.
    Berg S, Brodin B, Hesselvik F, Laurent TC, Maller R (1988) Elevated levels of plasma hyaluronan in septicaemia. Scand J Clin Lab Invest 48:727–732PubMedGoogle Scholar
  62. 62.
    Sallisalmi M, Tenhunen J, Kultti A, Tammi M, Pettilä V (2013) Plasma hyaluronan and hemorheology in patients with septic shock: a clinical and experimental study. Microcirc, Clin HemorheolGoogle Scholar
  63. 63.
    Yagmur E, Koch A, Haumann M, Kramann R, Trautwein C et al (2012) Hyaluronan serum concentrations are elevated in critically ill patients and associated with disease severity. Clin Biochem 45:82–87PubMedGoogle Scholar
  64. 64.
    Keel M, Harter L, Reding T, Sun LK, Hersberger M et al (2009) Pancreatic stone protein is highly increased during posttraumatic sepsis and activates neutrophil granulocytes. Crit Care Med 37:1642–1648PubMedGoogle Scholar
  65. 65.
    Que YA, Delodder F, Guessous I, Graf R, Bain M et al (2012) Pancreatic stone protein as an early biomarker predicting mortality in a prospective cohort of patients with sepsis requiring ICU management. Crit Care 16:R114PubMedPubMedCentralGoogle Scholar
  66. 66.
    Llewelyn MJ, Berger M, Gregory M, Ramaiah R, Taylor AL et al (2013) Sepsis biomarkers in unselected patients on admission to intensive or high-dependency care. Crit Care 17:R60PubMedPubMedCentralGoogle Scholar
  67. 67.
    Gukasjan R, Raptis DA, Schulz HU, Halangk W, Graf R (2013) Pancreatic stone protein predicts outcome in patients with peritonitis in the ICU. Crit Care Med 41:1027–1036PubMedGoogle Scholar
  68. 68.
    Delogu G, Lo Bosco L, Marandola M, Famularo G, Lenti L et al (1997) Heat shock protein (HSP70) expression in septic patients. J Crit Care 12:188–192PubMedGoogle Scholar
  69. 69.
    Sonna LA, Hawkins L, Lissauer ME, Maldeis P, Towns M et al (2010) Core temperature correlates with expression of selected stress and immunomodulatory genes in febrile patients with sepsis and noninfectious SIRS. Cell Stress Chaperones 15:55–66PubMedPubMedCentralGoogle Scholar
  70. 70.
    Gupta A, Cooper ZA, Tulapurkar ME, Potla R, Maity T et al (2013) Toll-like receptor agonists and febrile range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release. J Biol Chem 288:2756–2766PubMedPubMedCentralGoogle Scholar
  71. 71.
    Waterer GW, ElBahlawan L, Quasney MW, Zhang Q, Kessler LA et al (2003) Heat shock protein 70-2 + 1267 AA homozygotes have an increased risk of septic shock in adults with community-acquired pneumonia. Crit Care Med 31:1367–1372PubMedGoogle Scholar
  72. 72.
    Pittet J-F, Lee H, Morabito D, Howard MB, Welch WJ et al (2002) Serum levels of Hsp 72 measured early after trauma correlate with survival. J Trauma 52:611–617PubMedGoogle Scholar
  73. 73.
    Wheeler DS, Fisher LE Jr, Catravas JD, Jacobs BR, Carcillo JA et al (2005) Extracellular hsp70 levels in children with septic shock. Pediatr Crit Care Med 6:308–311PubMedGoogle Scholar
  74. 74.
    Gelain DP, De Bittencourt Pasquali MA, Comim MC, Grunwald MS, Ritter C et al (2011) Serum heat shock protein 70 levels, oxidant status, and mortality in sepsis. Shock 35:466–470PubMedGoogle Scholar
  75. 75.
    Adib-Conquy M, Cavaillon JM (2007) Stress molecules in sepsis and systemic inflammatory response syndrome. FEBS Lett 581:3723–3733PubMedGoogle Scholar
  76. 76.
    Wheeler DS, Lahni P, Odoms K, Jacobs BR, Carcillo JA et al (2007) Extracellular heat shock protein 60 (Hsp60) levels in children with septic shock. Inflamm Res 56:216–219PubMedGoogle Scholar
  77. 77.
    Rhodes A, Wort SJ, Thomas H, Collinson P, Bennett ED (2006) Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit Care 10:R60PubMedPubMedCentralGoogle Scholar
  78. 78.
    Saukkonen K, Lakkisto P, Pettila V, Varpula M, Karlsson S et al (2008) Cell-free plasma DNA as a predictor of outcome in severe sepsis and septic shock. Clin Chem 54:1000–1007PubMedGoogle Scholar
  79. 79.
    Margraf S, Logters T, Reipen J, Altrichter J, Scholz M et al (2008) Neutrophil-derived circulating free DNA (cf-DNA/NETs): a potential prognostic marker for posttraumatic development of inflammatory second hit and sepsis. Shock 30:352–358PubMedGoogle Scholar
  80. 80.
    Moreira VG, Prieto B, Rodriguez JS, Alvarez FV (2010) Usefulness of cell-free plasma DNA, procalcitonin and C-reactive protein as markers of infection in febrile patients. Ann Clin Biochem 47:253–258PubMedGoogle Scholar
  81. 81.
    Huttunen R, Kuparinen T, Jylhava J, Aittoniemi J, Vuento R et al (2011) Fatal outcome in bacteremia is characterized by high plasma cell free DNA concentration and apoptotic DNA fragmentation: a prospective cohort study. PLoS One 6:e21700PubMedPubMedCentralGoogle Scholar
  82. 82.
    Dwivedi DJ, Toltl LJ, Swystun LL, Pogue J, Liaw KL et al (2012) Prognostic utility and characterization of cell-free DNA in patients with severe sepsis. Crit Care 16:R151PubMedPubMedCentralGoogle Scholar
  83. 83.
    Kung CT, Hsiao SY, Tsai TC, Su CM, Chang WN et al (2012) Plasma nuclear and mitochondrial DNA levels as predictors of outcome in severe sepsis patients in the emergency room. J Transl Med 10:130PubMedPubMedCentralGoogle Scholar
  84. 84.
    Puskarich MA, Shapiro NI, Trzeciak S, Kline JA, Jones AE (2012) Plasma levels of mitochondrial DNA in patients presenting to the emergency department with sepsis. Shock 38:337–340PubMedPubMedCentralGoogle Scholar
  85. 85.
    Yamanouchi S, Kudo D, Yamada M, Miyagawa N, Furukawa H et al (2013) Plasma mitochondrial DNA levels in patients with trauma and severe sepsis: time course and the association with clinical status. J Crit Care 28(6):1027–31PubMedGoogle Scholar
  86. 86.
    Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195PubMedGoogle Scholar
  87. 87.
    Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251PubMedGoogle Scholar
  88. 88.
    Angus DC, Yang L, Kong L, Kellum JA, Delude RL et al (2007) Circulating high-mobility group box 1 (HMGB1) concentrations are elevated in both uncomplicated pneumonia and pneumonia with severe sepsis. Crit Care Med 35:1061–1067PubMedGoogle Scholar
  89. 89.
    Sunden-Cullberg J, Norrby-Teglund A, Rouhiainen A, Rauvala H, Herman G et al (2005) Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med 33:564–573PubMedGoogle Scholar
  90. 90.
    van Zoelen MA, Laterre PF, van Veen SQ, van Till JW, Wittebole X et al (2007) Systemic and local high mobility group box 1 concentrations during severe infection. Crit Care Med 35:2799–2804PubMedGoogle Scholar
  91. 91.
    Gaini S, Pedersen SS, Koldkaer OG, Pedersen C, Moestrup SK et al (2008) New immunological serum markers in bacteraemia: anti-inflammatory soluble CD163, but not proinflammatory high mobility group-box 1 protein, is related to prognosis. Clin Exp Immunol 151:423–431PubMedPubMedCentralGoogle Scholar
  92. 92.
    Foell D, Wittkowski H, Vogl T, Roth J (2007) S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol 81:28–37PubMedGoogle Scholar
  93. 93.
    van Zoelen MA, Vogl T, Foell D, Van Veen SQ, van Till JW et al (2009) Expression and role of myeloid-related protein-14 in clinical and experimental sepsis. Am J Respir Crit Care Med 180:1098–1106PubMedGoogle Scholar
  94. 94.
    Terrin G, Passariello A, Manguso F, Salvia G, Rapacciuolo L et al (2011) Serum calprotectin: an antimicrobial peptide as a new marker for the diagnosis of sepsis in very low birth weight newborns. Clin Dev Immunol 2011:291085PubMedPubMedCentralGoogle Scholar
  95. 95.
    Fontaine M, Pachot A, Larue A, Mougin B, Landelle C et al (2009) Delayed increased S100A9 mRNA predicts hospital-acquired infection after septic shock. Crit Care 13:P56PubMedCentralGoogle Scholar
  96. 96.
    ten Oever J, Giamarellos-Bourboulis EJ, van de Veerdonk FL, Stelma FF, Simon A et al (2013) Circulating galectin-3 in infections and non-infectious inflammatory diseases. Eur J Clin Microbiol Infect Dis 32:1605–1610PubMedGoogle Scholar
  97. 97.
    Hotchkiss RS, Nicholson DW (2006) Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 6:813–822PubMedGoogle Scholar
  98. 98.
    Mariano F, Cantaluppi V, Stella M, Romanazzi GM, Assenzio B et al (2008) Circulating plasma factors induce tubular and glomerular alterations in septic burns patients. Crit Care 12:R42PubMedPubMedCentralGoogle Scholar
  99. 99.
    Ertel W, Keel M, Infanger M, Ungethum U, Steckholzer U et al (1998) Circulating mediators in serum of injured patients with septic complications inhibit neutrophil apoptosis through up-regulation of protein-tyrosine phosphorylation. J Trauma 44:767–775, discussion 775-766PubMedGoogle Scholar
  100. 100.
    Paunel-Gorgulu A, Flohe S, Scholz M, Windolf J, Logters T (2011) Increased serum soluble Fas after major trauma is associated with delayed neutrophil apoptosis and development of sepsis. Crit Care 15:R20PubMedPubMedCentralGoogle Scholar
  101. 101.
    De Freitas I, Fernandez-Somoza M, Essenfeld-Sekler E, Cardier JE (2004) Serum levels of the apoptosis-associated molecules, tumor necrosis factor-alpha/tumor necrosis factor type-I receptor and Fas/FasL, in sepsis. Chest 125:2238–2246PubMedGoogle Scholar
  102. 102.
    Doughty L, Clark RS, Kaplan SS, Sasser H, Carcillo J (2002) sFas and sFas ligand and pediatric sepsis-induced multiple organ failure syndrome. Pediatr Res 52:922–927PubMedGoogle Scholar
  103. 103.
    Huttunen R, Syrjanen J, Vuento R, Laine J, Hurme M et al (2012) Apoptosis markers soluble Fas (sFas), Fas Ligand (FasL) and sFas/FasL ratio in patients with bacteremia: a prospective cohort study. J Infect 64:276–281PubMedGoogle Scholar
  104. 104.
    Moore DJ, Greystoke A, Butt F, Wurthner J, Growcott J et al (2012) A pilot study assessing the prognostic value of CK18 and nDNA biomarkers in severe sepsis patients. Clin Drug Investig 32:179–187PubMedGoogle Scholar
  105. 105.
    Roth GA, Krenn C, Brunner M, Moser B, Ploder M et al (2004) Elevated serum levels of epithelial cell apoptosis-specific cytokeratin 18 neoepitope m30 in critically ill patients. Shock 22:218–220PubMedGoogle Scholar
  106. 106.
    Hofer S, Brenner T, Bopp C, Steppan J, Lichtenstern C et al (2009) Cell death serum biomarkers are early predictors for survival in severe septic patients with hepatic dysfunction. Crit Care 13:R93PubMedPubMedCentralGoogle Scholar
  107. 107.
    Haeffner-Cavaillon N, Cavaillon J-M, Ciancioni C, Bacle F, Delons S et al (1989) In vivo induction of interleukin-1 during hemodialysis. Kidney Int 35:1212–1218PubMedGoogle Scholar
  108. 108.
    Muñoz C, Misset B, Fitting C, Bleriot JP, Carlet J et al (1991) Dissociation between plasma and monocyte-associated cytokines during sepsis. Eur J Immunol 21:2177–2184PubMedGoogle Scholar
  109. 109.
    Bozza FA, Salluh JI, Japiassu AM, Soares M, Assis EF et al (2007) Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care 11:R49PubMedPubMedCentralGoogle Scholar
  110. 110.
    Fischer E, Van Zee KJ, Marano MA, Rock CS, Kenney JS et al (1992) Interleukin-1 receptor antagonist circulates in experimental inflammation and in human disease. Blood 79:2196–2200PubMedGoogle Scholar
  111. 111.
    Rogy MA, Coyle SM, Oldenburg HS, Rock CS, Barie PS et al (1994) Persistently elevated soluble tumor necrosis factor receptor and interleukin-1 receptor antagonist levels in critically ill patients. J Am Coll Surg 178:132–138PubMedGoogle Scholar
  112. 112.
    van Deuren M, van der Ven-Jongekrijg J, Demacker PN, Bartelink AK, van Dalen R et al (1994) Differential expression of proinflammatory cytokines and their inhibitors during the course of meningococcal infections. J Infect Dis 169:157–161PubMedGoogle Scholar
  113. 113.
    Gardlund B, Sjölin J, Nilsson A, Roll M, Wickerts CJ et al (1995) Plasma levels of cytokines in primary septic shock in humans: correlation with disease severity. J Infect Dis 172:296–301PubMedGoogle Scholar
  114. 114.
    Küster H, Weiss M, Willeitner AE, Detlefsen S, Jeremias I et al (1998) Interleukin-1 receptor antagonist and interleukin-6 for early diagnosis of neonatal sepsis 2 days before clinical manifestation. Lancet 352:1271–1277PubMedGoogle Scholar
  115. 115.
    Marie C, Losser MR, Fitting C, Kermarrec N, Payen D et al (1997) Cytokines and soluble cytokines receptors in pleural effusions from septic and nonseptic patients. Am J Respir Crit Care Med 156:1515–1522PubMedGoogle Scholar
  116. 116.
    Adrie C, Adib-Conquy M, Laurent I, Monchi M, Vinsonneau C et al (2002) Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis like” syndrome. Circulation 106:562–568PubMedGoogle Scholar
  117. 117.
    Samson LM, Allen UD, Creery WD, Diaz-Mitoma F, Singh RN (1997) Elevated IL-1ra levels in pediatric sepsis syndrome. J Pediatr 131:587–591PubMedGoogle Scholar
  118. 118.
    Cruickshank AM, Fraser WD, Burns HJ, Van Damme J, Shenkin A (1990) Response of serum interleukin-6 in patients undergoing elective surgery of varying severity. Clin Sci (Lond) 79:161–165Google Scholar
  119. 119.
    Naskalski JW, Kusnierz-Cabala B, Panek J, Kedra B (2003) Poly-C specific ribonuclease activity correlates with increased concentrations of IL-6, IL-8 and sTNFR55/sTNFR75 in plasma of patients with acute pancreatitis. J Physiol Pharmacol 54:439–448PubMedGoogle Scholar
  120. 120.
    Cavaillon JM, Poignet JL, Fitting C, Delons S (1992) Serum interleukin-6 in long-term hemodialyzed patients. Nephron 60:307–313PubMedGoogle Scholar
  121. 121.
    Hack C, de Groot E, Felt-Bersma R, Nuijens J, Strack Van Schijndel R et al (1989) Increased plasma levels of interleukin-6 in sepsis. Blood 74:1704–1710PubMedGoogle Scholar
  122. 122.
    Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ et al (1993) Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 103:565–575PubMedGoogle Scholar
  123. 123.
    Rodriguez-Gaspar M, Santolaria F, Jarque-Lopez A, Gonzalez-Reimers E, Milena A et al (2001) Prognostic value of cytokines in SIRS general medical patients. Cytokine 15:232–236PubMedGoogle Scholar
  124. 124.
    Calandra T, Gerain J, Heumann D, Baumgartner JD, Glauser MP (1991) High circulating levels of interleukin-6 in patients with septic shock: evolution during sepsis, prognostic value, and interplay with other cytokines. The Swiss-Dutch J5 Immunoglobulin Study Group. Am J Med 91:23–29PubMedGoogle Scholar
  125. 125.
    Cavaillon JM, Adib-Conquy M, Fitting C, Adrie C, Payen D (2003) Cytokine cascade in sepsis. Scand J Infect Dis 35:535–544PubMedGoogle Scholar
  126. 126.
    Ortqvist A, Hedlund J, Wretlind B, Carlstrom A, Kalin M (1995) Diagnostic and prognostic value of interleukin-6 and C-reactive protein in community-acquired pneumonia. Scand J Infect Dis 27:457–462PubMedGoogle Scholar
  127. 127.
    Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin-6, interleukin-1, and fatal outcome. J Exp Med 169:333–338PubMedGoogle Scholar
  128. 128.
    Casey LC, Balk RA, Bone RC (1993) Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 119:771–778PubMedGoogle Scholar
  129. 129.
    Friedland JS, Porter JC, Daryanani S, Bland JM, Screaton NJ et al (1996) Plasma proinflammatory cytokine concentrations, acute physiology and chronic health evaluation (APACHE) III scores and survival in patients in an intensive care unit. Crit Care Med 24:1775–1781PubMedGoogle Scholar
  130. 130.
    Riche FC, Cholley BP, Panis YH, Laisne MJ, Briard CG et al (2000) Inflammatory cytokine response in patients with septic shock secondary to generalized peritonitis. Crit Care Med 28:433–437PubMedGoogle Scholar
  131. 131.
    Suarez-Santamaria M, Santolaria F, Perez-Ramirez A, Aleman-Valls MR, Martinez-Riera A et al (2010) Prognostic value of inflammatory markers (notably cytokines and procalcitonin), nutritional assessment, and organ function in patients with sepsis. Eur Cytokine Netw 21:19–26PubMedGoogle Scholar
  132. 132.
    Buck C, Bundschu J, Gallati H, Bartmann P, Pohlandt F (1994) Interleukin-6: a sensitive parameter for the early diagnosis of neonatal bacterial infection. Pediatrics 93:54–58PubMedGoogle Scholar
  133. 133.
    Messer J, Eyer D, Donato L, Gallati H, Matis J et al (1996) Evaluation of interleukin-6 and soluble receptors of tumor necrosis factor for early diagnosis of neonatal infection. J Pediatr 129:574–580PubMedGoogle Scholar
  134. 134.
    Strait RT, Kelly KJ, Kurup VP (1999) Tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 levels in febrile, young children with and without occult bacteremia. Pediatrics 104:1321–1326PubMedGoogle Scholar
  135. 135.
    Urbonas V, Eidukaite A, Tamuliene I (2012) The diagnostic value of interleukin-6 and interleukin-8 for early prediction of bacteremia and sepsis in children with febrile neutropenia and cancer. J Pediatr Hematol Oncol 34:122–127PubMedGoogle Scholar
  136. 136.
    Groeneveld AB, Bossink AW, van Mierlo GJ, Hack CE (2001) Circulating inflammatory mediators in patients with fever: predicting bloodstream infection. Clin Diagn Lab Immunol 8:1189–1195PubMedPubMedCentralGoogle Scholar
  137. 137.
    Sander M, von Heymann C, von Dossow V, Spaethe C, Konertz WF et al (2006) Increased interleukin-6 after cardiac surgery predicts infection. Anesth Analg 102:1623–1629PubMedGoogle Scholar
  138. 138.
    Giannoudis PV, Smith MR, Evans RT, Bellamy MC, Guillou PJ (1998) Serum CRP and IL-6 levels after trauma. Not predictive of septic complications in 31 patients. Acta Orthop Scand 69:184–188PubMedGoogle Scholar
  139. 139.
    Rintala E, Pulkki K, Mertsola J, Nevalainen T, Nikoskelainen J (1995) Endotoxin, interleukin-6 and phospholipase-A2 as markers of sepsis in patients with hematological malignancies. Scand J Infect Dis 27:39–43PubMedGoogle Scholar
  140. 140.
    Jekarl DW, Lee SY, Lee J, Park YJ, Kim Y et al (2013) Procalcitonin as a diagnostic marker and IL-6 as a prognostic marker for sepsis. Diagn Microbiol Infect Dis 75:342–347PubMedGoogle Scholar
  141. 141.
    Marchant A, Devière J, Byl B, De Groote D, Vincent J et al (1994) Interleukin-10 production during septicaemia. Lancet 343:707–708PubMedGoogle Scholar
  142. 142.
    Glynn P, Coakley R, Kilgallen I, Murphy N, O’Neill S (1999) Circulating interleukin 6 and interleukin 10 in community acquired pneumonia. Thorax 54:51–55PubMedPubMedCentralGoogle Scholar
  143. 143.
    Lehmann AK, Halstensen A, Sornes S, Rokke O, Waage A (1995) High levbels of interleukin-10 in serum are associated with fatality in meningococcal disease. Infect Immun 63:2109–2112PubMedPubMedCentralGoogle Scholar
  144. 144.
    Gogos CA, Drosou E, Bassaris HP, Skoutelis A (2000) Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis 181:176–180PubMedGoogle Scholar
  145. 145.
    van Dissel JT, van Langevelde P, Westendorp RGJ, Kwappenberg K, Frolich M (1998) Anti-inflammatory cytokine profile and mortality in febrile patients. Lancet 351:950–953PubMedGoogle Scholar
  146. 146.
    Kellum JA, Kong L, Fink MP, Weissfeld LA, Yealy DM et al (2007) Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study. Arch Intern Med 167:1655–1663PubMedGoogle Scholar
  147. 147.
    van Deuren M, van Der Ven-Jongekrijg H, Baterlink AKN, van Dalen R, Sauerwein RW et al (1995) Correlation between proinflammatory cytokines and antiinflammatory mediators and the severity of disease in meningococcal infections. J Infect Dis 172:433–439PubMedGoogle Scholar
  148. 148.
    Gomez-Jimenez J, Martin MC, Sauri R, Segura RM, Esteban F et al (1995) Interleukin-10 and the monocyte/macrophage-induced inflammatory response in septic shock. J Infect Dis 171:472–475PubMedGoogle Scholar
  149. 149.
    Riordan FA, Marzouk O, Thomson AP, Sills JA, Hart CA (1996) Proinflammatory and anti-inflammatory cytokines in meningococcal disease. Arch Dis Child 75:453–454PubMedPubMedCentralGoogle Scholar
  150. 150.
    Tamayo E, Fernandez A, Almansa R, Carrasco E, Heredia M et al (2011) Pro- and anti-inflammatory responses are regulated simultaneously from the first moments of septic shock. Eur Cytokine Netw 22:82–87PubMedGoogle Scholar
  151. 151.
    Cavaillon J-M, Adib-Conquy M, Cloëz-Tayarani I, Fitting C (2001) Immunodepression in sepsis and SIRS assessed by ex vivo cytokine production is not a generalized phenomenon : a review. J Endotoxin Res 7:85–93PubMedGoogle Scholar
  152. 152.
    Matera G, Puccio R, Giancotti A, Quirino A, Pulicari MC et al (2013) Impact of interleukin-10, soluble CD25 and interferon-gamma on the prognosis and early diagnosis of bacteremic systemic inflammatory response syndrome: a prospective observational study. Crit Care 17:R64PubMedPubMedCentralGoogle Scholar
  153. 153.
    Presterl E, Staudinger T, Pettermann M, Lassnigg A, Burgmann H et al (1997) Cytokine profile and correlation to the APACHE III and MPM II scores in patients with sepsis. Am J Respir Crit Care Med 156:825–832PubMedGoogle Scholar
  154. 154.
    Vedrine C, Caraion C, Lambert C, Genin C (2004) Cytometric bead assay of cytokines in sepsis: a clinical evaluation. Cytometry B Clin Cytom 60:14–22PubMedGoogle Scholar
  155. 155.
    Mera S, Tatulescu D, Cismaru C, Bondor C, Slavcovici A et al (2010) Multiplex cytokine profiling in patients with sepsis. APMIS 119:155–163PubMedGoogle Scholar
  156. 156.
    Emmanuilidis K, Weighardt H, Matevossian E, Heidecke CD, Ulm K et al (2002) Differential regulation of systemic IL-18 and IL-12 release during postoperative sepsis: high serum IL-18 as an early predictive indicator of lethal outcome. Shock 18:301–305PubMedGoogle Scholar
  157. 157.
    Wu HP, Chen CK, Chung K, Tseng JC, Hua CC et al (2009) Serial cytokine levels in patients with severe sepsis. Inflamm Res 58:385–393PubMedGoogle Scholar
  158. 158.
    Lavoie PM, Huang Q, Jolette E, Whalen M, Nuyt AM et al (2010) Profound lack of interleukin (IL)-12/IL-23p40 in neonates born early in gestation is associated with an increased risk of sepsis. J Infect Dis 202:1754–1763PubMedPubMedCentralGoogle Scholar
  159. 159.
    Zeerleder S, Hack CE, Caliezi C, van Mierlo G, Eerenberg-Belmer A et al (2005) Activated cytotoxic T cells and NK cells in severe sepsis and septic shock and their role in multiple organ dysfunction. Clin Immunol 116:158–165PubMedGoogle Scholar
  160. 160.
    Lauw FN, Simpson AJH, Prins JM, Smith MD, Kurimoto M et al (1999) Elevated plasma concentrations of interferon (IFN) and the IFN-inducing cytokines interleukin (IL)18, IL-12, and IL-15 in severe melioidosis. J Infect Dis 180:1878–1885PubMedGoogle Scholar
  161. 161.
    Grobmyer SR, Lin E, Lowry SF, Rivadeneira DE, Potter S et al (2000) Elevation of IL-18 in human sepsis. J Clin Immunol 20:212–215PubMedGoogle Scholar
  162. 162.
    Oberholzer A, Steckholzer U, Kurimoto M, Trentz O, Ertel W (2001) Interleukin-18 plasma levels are increased in patients with sepsis compared to severely injured patients. Shock 16:411–414PubMedGoogle Scholar
  163. 163.
    Zaki MES, Elgendy MY, El-Mashad NB, Farahat ME (2007) IL-18 level correlates with development of sepsis in surgical patients. Immunol Invest 36:403–411Google Scholar
  164. 164.
    Mommsen P, Frink M, Pape HC, van Griensven M, Probst C et al (2009) Elevated systemic IL-18 and neopterin levels are associated with posttraumatic complications among patients with multiple injuries: a prospective cohort study. Injury 40:528–534PubMedGoogle Scholar
  165. 165.
    Waage A, Halstensen A, Espevik T (1987) Association between tumor necrosis factor in serum and fatal outcome in patients with meningococcal disease. Lancet i: 355–357Google Scholar
  166. 166.
    Girardin E, Grau G, Dayer J, Roux-Lombard P, Lambert P (1988) Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. N Engl J Med 319:397–400PubMedGoogle Scholar
  167. 167.
    de Groote MA, Martin MA, Densen P, Pfaller MA, Wenzel RP (1989) Plasma tumor necrosis factor levels in patients with presumed sepsis. Results in those treated with antilipid A antibody vs placebo [see comments]. JAMA 262:249–251PubMedGoogle Scholar
  168. 168.
    Offner F, Philippé J, Vogelaers D, Colardyn F, Baele G et al (1990) Serum tumor necrosis factor levels in patients with infectious diseases and septic shock. J Lab Clin Med 116:100–105PubMedGoogle Scholar
  169. 169.
    Calandra T, Baumgartner JD, Grau GE, Wu MM, Lambert PH et al (1990) Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-a, and interferon-g in the serum of patients with septic shock. J Infect Dis 161:982–987PubMedGoogle Scholar
  170. 170.
    Calandra T, Echtenacher B, Le Roy D, Pugin J, Metz CN et al (2000) Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med 6:164–170PubMedGoogle Scholar
  171. 171.
    Emonts M, Sweep FC, Grebenchtchikov N, Geurts-Moespot A, Knaup M et al (2007) Association between high levels of blood macrophage migration inhibitory factor, inappropriate adrenal response, and early death in patients with severe sepsis. Clin Infect Dis 44:1321–1328PubMedGoogle Scholar
  172. 172.
    Maxime V, Fitting C, Annane D, Cavaillon J-M (2005) Corticoids normalize leukocyte production of macrophage migration inhibitory factor in septic shock. J Infect Dis 191:138–144PubMedGoogle Scholar
  173. 173.
    Leaver SK, MacCallum NS, Pingle V, Hacking MB, Quinlan GJ et al (2010) Increased plasma thioredoxin levels in patients with sepsis: positive association with macrophage migration inhibitory factor. Intensive Care Med 36:336–341PubMedPubMedCentralGoogle Scholar
  174. 174.
    Grieb G, Simons D, Piatkowski A, Bernhagen J, Steffens G et al (2010) Macrophage migration inhibitory factor-A potential diagnostic tool in severe burn injuries? Burns 36:335–342PubMedGoogle Scholar
  175. 175.
    Gessler P, Kirchmann N, Kientsch-Engel R, Haas N, Lasch P et al (1993) Serum concentrations of granulocyte colony-stimulating factor in healthy term and preterm neonates and in those with various diseases including bacterial infections. Blood 82:3177–3182PubMedGoogle Scholar
  176. 176.
    Pauksen K, Elfman L, Ulfgren AK, Venge P (1994) Serum levels of granulocyte-colony stimulating factor (G-CSF) in bacterial and viral infections, and in atypical pneumonia. Br J Haematol 88:256–260PubMedGoogle Scholar
  177. 177.
    Fischer JE, Benn A, Harbarth S, Nadal D, Fanconi S (2002) Diagnostic accuracy of G-CSF, IL-8, and IL-1ra in critically ill children with suspected infection. Intensive Care Med 28:1324–1331PubMedGoogle Scholar
  178. 178.
    Tanaka H, Ishikawa K, Nishino M, Shimazu T, Yoshioka T (1996) Changes in granulocyte colony-stimulating factor concentration in patients with trauma and sepsis. J Trauma 40:718–725, discussion 725-716PubMedGoogle Scholar
  179. 179.
    Kragsbjerg P, Jones I, Vikerfors T, Holmberg H (1995) Diagnostic value of blood cytokine concentrations in acute pneumonia. Thorax 50:1253–1257PubMedPubMedCentralGoogle Scholar
  180. 180.
    Presneill JJ, Waring PM, Layton JE, Maher DW, Cebon J et al (2000) Plasma granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor levels in critical illness including sepsis and septic shock: relation to disease severity, multiple organ dysfunction, and mortality. Crit Care Med 28:2344–2354PubMedGoogle Scholar
  181. 181.
    Torre D, Tambini R, Manfredi M, Mangani V, Livi P et al (2003) Circulating levels of granulocyte macrophage colony-stimulating factor in patients with the systemic inflammatory response syndrome. J Infect 47:296–299PubMedGoogle Scholar
  182. 182.
    Waring P, Wycherley K, Cary D, Nicola N, Metcalf D (1992) Leukemia inhibitory factor levels are elevated in septic shock and various inflammatory body fluids. J Clin Invest 90:2031–2037PubMedPubMedCentralGoogle Scholar
  183. 183.
    Villers D, Dao T, Nguyen JM, Bironneau E, Godard A et al (1995) Increased plasma levels of human interleukin for DA1a cells/leukemia inhibitory factor in sepsis correlate with shock and poor prognosis. J Infect Dis 171:232–236PubMedGoogle Scholar
  184. 184.
    Guillet C, Fourcin M, Chevalier S, Pouplard A, Gascan H (1995) ELISA detection of circulating levels of LIF, OSM and CNTF in septic shock. Ann N Y Acad Sci 762:407–412PubMedGoogle Scholar
  185. 185.
    Collighan N, Giannoudis PV, Kourgeraki O, Perry SL, Guillou PJ et al (2004) Interleukin 13 and inflammatory markers in human sepsis. Br J Surg 91:762–768PubMedGoogle Scholar
  186. 186.
    Wong HR, Cvijanovich NZ, Hall M, Allen GL, Thomas NJ et al (2012) Interleukin-27 is a novel candidate diagnostic biomarker for bacterial infection in critically ill children. Crit Care 16:R213PubMedPubMedCentralGoogle Scholar
  187. 187.
    Lee KA, Gong MN (2011) Pre-B-cell colony-enhancing factor and its clinical correlates with acute lung injury and sepsis. Chest 140:382–390PubMedPubMedCentralGoogle Scholar
  188. 188.
    Bjerre A, Brusletto B, Hoiby EA, Kierulf P, Brandtzaeg P (2004) Plasma interferon-gamma and interleukin-10 concentrations in systemic meningococcal disease compared with severe systemic Gram-positive septic shock. Crit Care Med 32:433–438PubMedGoogle Scholar
  189. 189.
    van der Flier M, van Leeuwen HJ, van Kessel KP, Kimpen JL, Hoepelman AI et al (2005) Plasma vascular endothelial growth factor in severe sepsis. Shock 23:35–38PubMedGoogle Scholar
  190. 190.
    Socha LA, Gowardman J, Silva D, Correcha M, Petrosky N (2006) Elevation in interleukin 13 levels in patients diagnosed with systemic inflammatory response syndrome. Intensive Care Med 32:244–250PubMedGoogle Scholar
  191. 191.
    Friedland J, Suputtamongkol Y, Remick D, Chaowagul W, Strieter R et al (1992) Prolonged elevation of interleukin-8 and interleukin-6 concentrations in plasma and of leukocyte interleukin-8 m-RNA levels during septicemic and localized Pseudomonas pseudomallei infection. Infect Immun 60:2402–2408PubMedPubMedCentralGoogle Scholar
  192. 192.
    Hack C, Hart M, Strack van Schijndel R, Eerenberg A, Nuijens J et al (1992) Interleukin-8 in sepsis: relation to shock and inflammatory mediators. Infect Immun 60:2835–2842PubMedPubMedCentralGoogle Scholar
  193. 193.
    Bossink AW, Paemen L, Jansen PM, Hack CE, Thijs LG et al (1995) Plasma levels of the chemokines monocyte chemotactic proteins-1 and -2 are elevated in human sepsis. Blood 86:3841–3847PubMedGoogle Scholar
  194. 194.
    Endo S, Inada K, Ceska M, Takakuwa T, Yamada Y et al (1995) Plasma interleukin 8 and polymorphonuclear leukocyte elastase concentrations in patients with septic shock. J Inflamm 45:136–142PubMedGoogle Scholar
  195. 195.
    Marty C, Misset B, Tamion F, Fitting C, Carlet J et al (1994) Circulating interleukin-8 concentrations in patients with multiple organ failure of septic and nonseptic origin. Crit Care Med 22:673–679PubMedGoogle Scholar
  196. 196.
    Fujishima S, Sasaki J, Shinozawa Y, Takuma K, Kimura H et al (1996) Serum MIP-1 alpha and IL-8 in septic patients. Intensive Care Med 22:1169–1175PubMedGoogle Scholar
  197. 197.
    Livaditi O, Kotanidou A, Psarra A, Dimopoulou I, Sotiropoulou C et al (2006) Neutrophil CD64 expression and serum IL-8: sensitive early markers of severity and outcome in sepsis. Cytokine 36:283–290PubMedGoogle Scholar
  198. 198.
    Wong HR, Cvijanovich N, Wheeler DS, Bigham MT, Monaco M et al (2008) Interleukin-8 as a stratification tool for interventional trials involving pediatric septic shock. Am J Respir Crit Care Med 178:276–282PubMedPubMedCentralGoogle Scholar
  199. 199.
    de Bont ES, Vellenga E, Swaanenburg JC, Fidler V, Visser-van Brummen PJ et al (1999) Plasma IL-8 and IL-6 levels can be used to define a group with low risk of septicaemia among cancer patients with fever and neutropenia. Br J Haematol 107:375–380PubMedGoogle Scholar
  200. 200.
    Lin KJ, Lin J, Hanasawa K, Tani T, Kodama M (2000) Interleukin-8 as a predictor of the severity of bacteremia and infectious disease. Shock 14:95–100PubMedGoogle Scholar
  201. 201.
    Tromp YH, Daenen SM, Sluiter WJ, Vellenga E (2009) The predictive value of interleukin-8 (IL-8) in hospitalised patients with fever and chemotherapy-induced neutropenia. Eur J Cancer 45:596–600PubMedGoogle Scholar
  202. 202.
    Santolaya ME, Alvarez AM, Aviles CL, Becker A, King A et al (2008) Predictors of severe sepsis not clinically apparent during the first twenty-four hours of hospitalization in children with cancer, neutropenia, and fever: a prospective, multicenter trial. Pediatr Infect Dis J 27:538–543PubMedGoogle Scholar
  203. 203.
    Kurt AN, Aygun AD, Godekmerdan A, Kurt A, Dogan Y et al (2007) Serum IL-1beta, IL-6, IL-8, and TNF-alpha levels in early diagnosis and management of neonatal sepsis. Mediators Inflamm 2007:31397PubMedPubMedCentralGoogle Scholar
  204. 204.
    Marie C, Fitting C, Cheval C, Losser MR, Carlet J et al (1997) Presence of high levels of leukocyte-associated interleukin-8 upon cell activation and in patients with sepsis syndrome. Infect Immun 65:865–871PubMedPubMedCentralGoogle Scholar
  205. 205.
    Steinbach G, Bolke E, Schulte am Esch J, Peiper M, Zant R et al (2007) Comparison of whole blood interleukin-8 and plasma interleukin-8 as a predictor for sepsis in postoperative patients. Clin Chim Acta 378:117–121PubMedGoogle Scholar
  206. 206.
    Lvovschi V, Arnaud L, Parizot C, Freund Y, Juillien G et al (2011) Cytokine profiles in sepsis have limited relevance for stratifying patients in the emergency department: a prospective observational study. PLoS One 6:e28870PubMedPubMedCentralGoogle Scholar
  207. 207.
    Santana Reyes C, Garcia-Munoz F, Reyes D, Gonzalez G, Dominguez C et al (2003) Role of cytokines (interleukin-1beta, 6, 8, tumour necrosis factor-alpha, and soluble receptor of interleukin-2) and C-reactive protein in the diagnosis of neonatal sepsis. Acta Paediatr 92:221–227PubMedGoogle Scholar
  208. 208.
    Franz AR, Bauer K, Schalk A, Garland SM, Bowman ED et al (2004) Measurement of interleukin 8 in combination with C-reactive protein reduced unnecessary antibiotic therapy in newborn infants: a multicenter, randomized, controlled trial. Pediatrics 114:1–8PubMedGoogle Scholar
  209. 209.
    Ng PC, Li K, Chui KM, Leung TF, Wong RP et al (2007) IP-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 61:93–98PubMedGoogle Scholar
  210. 210.
    Olszyna DP, Prins JM, Dekkers PEP, De Jonge E, Speelman P et al (1999) Sequential measurements of chemokines in urosepsis and experimental endotoxemia. J Clin Immunol 19:399–405PubMedGoogle Scholar
  211. 211.
    Moller AS, Bjerre A, Brusletto B, Joo GB, Brandtzaeg P et al (2005) Chemokine patterns in meningococcal disease. J Infect Dis 191:768–775PubMedGoogle Scholar
  212. 212.
    Vermont CL, Hazelzet JA, de Kleijn ED, van den Dobbelsteen GP, de Groot R (2006) CC and CXC chemokine levels in children with meningococcal sepsis accurately predict mortality and disease severity. Crit Care 10:R33PubMedPubMedCentralGoogle Scholar
  213. 213.
    Andaluz-Ojeda D, Bobillo F, Iglesias V, Almansa R, Rico L et al (2012) A combined score of pro- and anti-inflammatory interleukins improves mortality prediction in severe sepsis. Cytokine 57:332–336PubMedGoogle Scholar
  214. 214.
    El-Maghraby SM, Moneer MM, Ismail MM, Shalaby LM, El-Mahallawy HA (2007) The diagnostic value of C-reactive protein, interleukin-8, and monocyte chemotactic protein in risk stratification of febrile neutropenic children with hematologic malignancies. J Pediatr Hematol Oncol 29:131–136PubMedGoogle Scholar
  215. 215.
    Nowak JE, Wheeler DS, Harmon KK, Wong HR (2010) Admission chemokine (C-C motif) ligand 4 levels predict survival in pediatric septic shock. Pediatr Crit Care Med 11:213–216PubMedPubMedCentralGoogle Scholar
  216. 216.
    Schall TJ, Jongstra J, Dyer BJ, Jorgensen J, Clayberger C et al (1988) A human T cell-specific molecule is a member of a new gene family. J Immunol 141:1018–1025PubMedGoogle Scholar
  217. 217.
    Carrol ED, Thomson AP, Mobbs KJ, Hart CA (2000) The role of RANTES in meningococcal disease. J Infect Dis 182:363–366PubMedGoogle Scholar
  218. 218.
    Ellis M, al-Ramadi B, Hedstrom U, Alizadeh H, Shammas V et al (2005) Invasive fungal infections are associated with severe depletion of circulating RANTES. J Med Microbiol 54:1017–1022PubMedGoogle Scholar
  219. 219.
    John CC, Opika-Opoka R, Byarugaba J, Idro R, Boivin MJ (2006) Low levels of RANTES are associated with mortality in children with cerebral malaria. J Infect Dis 194:837–845PubMedGoogle Scholar
  220. 220.
    Shouman B, Badr R (2010) Regulated on activation, normal T cell expressed and secreted and tumor necrosis factor-alpha in septic neonates. J Perinatol 30:192–196PubMedGoogle Scholar
  221. 221.
    Ellis M, al-Ramadi B, Hedstrom U, Frampton C, Alizadeh H et al (2005) Significance of the CC chemokine RANTES in patients with haematological malignancy: results from a prospective observational study. Br J Haematol 128:482–489PubMedGoogle Scholar
  222. 222.
    Ng PC, Li K, Leung TF, Wong RP, Li G et al (2006) Early prediction of sepsis-induced disseminated intravascular coagulation with interleukin-10, interleukin-6, and RANTES in preterm infants. Clin Chem 52:1181–1189PubMedGoogle Scholar
  223. 223.
    Bas S, Gauthier BR, Spenato U, Stingelin S, Gabay C (2004) CD14 is an acute-phase protein. J Immunol 172:4470–4479PubMedGoogle Scholar
  224. 224.
    Endo S, Inada K, Kasai T, Takakuwa T, Nakae H et al (1994) Soluble CD14 (sCD14) levels in patients with multiple organ failure (MOF). Res Commun Chem Pathol Pharmacol 84:17–25PubMedGoogle Scholar
  225. 225.
    Landmann R, Zimmerli W, Sansano S, Link S, Hahn A et al (1995) Increased circulating soluble CD14 is associated with high mortality in gram-negative septic shock. J Infect Dis 171:639–644PubMedGoogle Scholar
  226. 226.
    Burgmann H, Winkler S, Locker GJ, Presterl E, Laczika K et al (1996) Increased serum concentration of soluble CD14 is a prognostic marker in gram-positive sepsis. Clin Immunol Immunopathol 80:307–310PubMedGoogle Scholar
  227. 227.
    Berner R, Furll B, Stelter F, Drose J, Muller HP et al (2002) Elevated levels of lipopolysaccharide-binding protein and soluble CD14 in plasma in neonatal early-onset sepsis. Clin Diagn Lab Immunol 9:440–445PubMedPubMedCentralGoogle Scholar
  228. 228.
    Blanco A, Solis G, Arranz E, Coto GD, Ramos A et al (1996) Serum levels of CD14 in neonatal sepsis by gram-positive and gram-negative bacteria. Acta Paediatr 85:728–732PubMedGoogle Scholar
  229. 229.
    Pavcnik-Arnol M, Hojker S, Derganc M (2007) Lipopolysaccharide-binding protein, lipopolysaccharide, and soluble CD14 in sepsis of critically ill neonates and children. Intensive Care Med 33:1025–1032PubMedGoogle Scholar
  230. 230.
    Chalupa P, Beran O, Herwald H, Kasprikova N, Holub M (2011) Evaluation of potential biomarkers for the discrimination of bacterial and viral infections. Infection 39:411–417PubMedGoogle Scholar
  231. 231.
    Carrillo EH, Gordon L, Goode E, Davis E, Polk HC Jr (2001) Early elevation of soluble CD14 may help identify trauma patients at high risk for infection. J Trauma 50:810–816PubMedGoogle Scholar
  232. 232.
    Yaegashi Y, Shirakawa K, Sato N, Suzuki Y, Kojika M et al (2005) Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J Infect Chemother 11:234–238PubMedGoogle Scholar
  233. 233.
    Urbonas V, Eidukaite A, Tamuliene I (2013) The predictive value of soluble biomarkers (CD14 subtype, interleukin-2 receptor, human leucocyte antigen-G) and procalcitonin in the detection of bacteremia and sepsis in pediatric oncology patients with chemotherapy-induced febrile neutropenia. Cytokine 62:34–37PubMedGoogle Scholar
  234. 234.
    Pugin J, Stern-Voeffray S, Daubeuf B, Matthay MA, Elson G et al (2004) Soluble MD-2 activity in plasma from patients with severe sepsis and septic shock. Blood 104:4071–4079PubMedGoogle Scholar
  235. 235.
    Tissieres P, Dunn-Siegrist I, Schappi M, Elson G, Comte R et al (2008) Soluble MD-2 is an acute-phase protein and an opsonin for Gram-negative bacteria. Blood 111:2122–2131PubMedGoogle Scholar
  236. 236.
    Brunner M, Krenn C, Roth G, Moser B, Dworschak M et al (2004) Increased levels of soluble ST2 protein and IgG1 production in patients with sepsis and trauma. Intensive Care Med 30:1468–1473PubMedGoogle Scholar
  237. 237.
    Hoogerwerf JJ, Tanck MW, van Zoelen MA, Wittebole X, Laterre PF et al (2010) Soluble ST2 plasma concentrations predict mortality in severe sepsis. Intensive Care Med 36:630–637PubMedPubMedCentralGoogle Scholar
  238. 238.
    Takala A, Jousela I, Jansson SE, Olkkola KT, Takkunen O et al (1999) Markers of systemic inflammation predicting organ failure in community-acquired septic shock. Clin Sci (Lond) 97:529–538Google Scholar
  239. 239.
    Fleischhack G, Kambeck I, Cipic D, Hasan C, Bode U (2000) Procalcitonin in paediatric cancer patients: its diagnostic relevance is superior to that of C-reactive protein, interleukin 6, interleukin 8, soluble interleukin 2 receptor and soluble tumour necrosis factor receptor II. Br J Haematol 111:1093–1102PubMedGoogle Scholar
  240. 240.
    Saito K, Wagatsuma T, Toyama H, Ejima Y, Hoshi K et al (2008) Sepsis is characterized by the increases in percentages of circulating CD4 + CD25+ regulatory T cells and plasma levels of soluble CD25. Tohoku J Exp Med 216:61–68PubMedGoogle Scholar
  241. 241.
    Moller HJ, Moestrup SK, Weis N, Wejse C, Nielsen H et al (2006) Macrophage serum markers in pneumococcal bacteremia: prediction of survival by soluble CD163. Crit Care Med 34:2561–2566PubMedGoogle Scholar
  242. 242.
    Gaini S, Koldkjaer OG, Pedersen SS, Pedersen C, Moestrup SK et al (2006) Soluble haemoglobin scavenger receptor (sCD163) in patients with suspected community-acquired infections. APMIS 114:103–111PubMedGoogle Scholar
  243. 243.
    Schaer DJ, Schleiffenbaum B, Kurrer M, Imhof A, Bachli E et al (2005) Soluble hemoglobin-haptoglobin scavenger receptor CD163 as a lineage-specific marker in the reactive hemophagocytic syndrome. Eur J Haematol 74:6–10PubMedGoogle Scholar
  244. 244.
    Feng L, Zhou X, Su LX, Feng D, Jia YH et al (2012) Clinical significance of soluble hemoglobin scavenger receptor CD163 (sCD163) in sepsis, a prospective study. PLoS One 7:e38400PubMedPubMedCentralGoogle Scholar
  245. 245.
    Evans TJ, Moyes D, Carpenter A, Martin R, Loetscher H et al (1994) Protective effect of 55 but not 75 kD soluble tumor necrosis factor receptor-immunoglobulin G fusion proteins in animal model of gram negative sepsis. J Exp Med 180:2173–2179PubMedGoogle Scholar
  246. 246.
    Girardin E, Roux-Lombard P, Grau GE, Suter P, Gallati H et al (1992) Imbalance between tumour necrosis factor-alpha and soluble TNF receptor concentrations in severe meningococcaemia. Immunology 76:20–23PubMedPubMedCentralGoogle Scholar
  247. 247.
    Ertel W, Scholl FA, Gallati H, Bonaccio M, Schildberg FW et al (1994) Increased release of soluble tumor necrosis factor receptors into blood during clinical sepsis. Arch Surg 129:1330–1336, discussion 1336-1337PubMedGoogle Scholar
  248. 248.
    van der Poll T, Jansen J, van Leenen D, von der Mohlen M, Levi M et al (1993) Release of soluble receptors for tumor necrosis factor in clinical sepsis and experimental endotoxemia. J Infect Dis 168:955–960PubMedGoogle Scholar
  249. 249.
    Froon AH, Bemelmans MH, Greve JW, van der Linden CJ, Buurman WA (1994) Increased plasma concentrations of soluble tumor necrosis factor receptors in sepsis syndrome: correlation with plasma creatinine values. Crit Care Med 22:803–809PubMedGoogle Scholar
  250. 250.
    de Pablo R, Monserrat J, Reyes E, Diaz-Martin D, Rodriguez Zapata M et al (2011) Mortality in patients with septic shock correlates with anti-inflammatory but not proinflammatory immunomodulatory molecules. J Intensive Care Med 26:125–132PubMedGoogle Scholar
  251. 251.
    Pilz G, Fraunberger P, Appel R, Kreuzer E, Werdan K et al (1996) Early prediction of outcome in score-identified, postcardiac surgical patients at high risk for sepsis, using soluble tumor necrosis factor receptor-p55 concentrations. Crit Care Med 24:596–600PubMedGoogle Scholar
  252. 252.
    Zhang B, Huang YH, Chen Y, Yang Y, Hao ZL et al (1998) Plasma tumor necrosis factor-alpha, its soluble receptors and interleukin-1beta levels in critically burned patients. Burns 24:599–603PubMedGoogle Scholar
  253. 253.
    el-Barbary M, Khabar KS (2002) Soluble tumor necrosis factor receptor p55 predicts cytokinemia and systemic inflammatory response after cardiopulmonary bypass. Crit Care Med 30:1712–1716PubMedGoogle Scholar
  254. 254.
    Spielmann S, Kerner T, Ahlers O, Keh D, Gerlach M et al (2001) Early detection of increased tumour necrosis factor alpha (TNFalpha) and soluble TNF receptor protein plasma levels after trauma reveals associations with the clinical course. Acta Anaesthesiol Scand 45:364–370PubMedGoogle Scholar
  255. 255.
    Hou YQ, Xu P, Zhang M, Han D, Peng L et al (2012) Serum decoy receptor 3, a potential new biomarker for sepsis. Clin Chim Acta 413:744–748PubMedGoogle Scholar
  256. 256.
    Chen CY, Yang KY, Chen MY, Chen HY, Lin MT et al (2009) Decoy receptor 3 levels in peripheral blood predict outcomes of acute respiratory distress syndrome. Am J Respir Crit Care Med 180:751–760PubMedGoogle Scholar
  257. 257.
    Cowley HC, Heney D, Gearing AJ, Hemingway I, Webster NR (1994) Increased circulating adhesion molecule concentrations in patients with the systemic inflammatory response syndrome: a prospective cohort study. Crit Care Med 22:651–657PubMedGoogle Scholar
  258. 258.
    Boldt J, Wollbruck M, Kuhn D, Linke LC, Hempelmann G (1995) Do plasma levels of circulating soluble adhesion molecules differ between surviving and nonsurviving critically ill patients? Chest 107:787–792PubMedGoogle Scholar
  259. 259.
    Froon AH, Bonten MJ, Gaillard CA, Greve JW, Dentener MA et al (1998) Prediction of clinical severity and outcome of ventilator-associated pneumonia. Comparison of simplified acute physiology score with systemic inflammatory mediators. Am J Respir Crit Care Med 158:1026–1031PubMedGoogle Scholar
  260. 260.
    Hein OV, Misterek K, Tessmann JP, van Dossow V, Krimphove M et al (2005) Time course of endothelial damage in septic shock: prediction of outcome. Crit Care 9:R323–R330PubMedPubMedCentralGoogle Scholar
  261. 261.
    Sessler CN, Windsor AC, Schwartz M, Watson L, Fisher BJ et al (1995) Circulating ICAM-1 is increased in septic shock. Am J Respir Crit Care Med 151:1420–1427PubMedGoogle Scholar
  262. 262.
    Shapiro NI, Schuetz P, Yano K, Sorasaki M, Parikh SM et al (2010) The association of endothelial cell signaling, severity of illness, and organ dysfunction in sepsis. Crit Care 14:R182PubMedPubMedCentralGoogle Scholar
  263. 263.
    Boldt J, Muller M, Kuhn D, Linke LC, Hempelmann G (1996) Circulating adhesion molecules in the critically ill: a comparison between trauma and sepsis patients. Intensive Care Med 22:122–128PubMedGoogle Scholar
  264. 264.
    Leone M, Boutiere B, Camoin-Jau L, Albanese J, Horschowsky N et al (2002) Systemic endothelial activation is greater in septic than in traumatic-hemorrhagic shock but does not correlate with endothelial activation in skin biopsies. Crit Care Med 30:808–814PubMedGoogle Scholar
  265. 265.
    Cummings CJ, Sessler CN, Beall LD, Fisher BJ, Best AM et al (1997) Soluble E-selectin levels in sepsis and critical illness. Correlation with infection and hemodynamic dysfunction. Am J Respir Crit Care Med 156:431–437PubMedGoogle Scholar
  266. 266.
    Kayal S, Jais JP, Aguini N, Chaudiere J, Labrousse J (1998) Elevated circulating E-selectin, intercellular adhesion molecule 1, and von Willebrand factor in patients with severe infection. Am J Respir Crit Care Med 157:776–784PubMedGoogle Scholar
  267. 267.
    Schuetz P, Jones AE, Aird WC, Shapiro NI (2011) Endothelial cell activation in emergency department patients with sepsis-related and non-sepsis-related hypotension. Shock 36:104–108PubMedPubMedCentralGoogle Scholar
  268. 268.
    de Pablo R, Monserrat J, Reyes E, Diaz D, Rodriguez-Zapata M et al (2013) Circulating sICAM-1 and sE-Selectin as biomarker of infection and prognosis in patients with systemic inflammatory response syndrome. Eur J Intern Med 24:132–138PubMedGoogle Scholar
  269. 269.
    Dollner H, Vatten L, Austgulen R (2001) Early diagnostic markers for neonatal sepsis: comparing C-reactive protein, interleukin-6, soluble tumour necrosis factor receptors and soluble adhesion molecules. J Clin Epidemiol 54:1251–1257PubMedGoogle Scholar
  270. 270.
    Geppert A, Zorn G, Karth GD, Haumer M, Gwechenberger M et al (2000) Soluble selectins and the systemic inflammatory response syndrome after successful cardiopulmonary resuscitation. Crit Care Med 28:2360–2365PubMedGoogle Scholar
  271. 271.
    Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S et al (2006) Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12:235–239PubMedGoogle Scholar
  272. 272.
    Parikh SM, Mammoto T, Schultz A, Yuan HT, Christiani D et al (2006) Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 3:e46PubMedPubMedCentralGoogle Scholar
  273. 273.
    Orfanos SE, Kotanidou A, Glynos C, Athanasiou C, Tsigkos S et al (2007) Angiopoietin-2 is increased in severe sepsis: correlation with inflammatory mediators. Crit Care Med 35:199–206PubMedGoogle Scholar
  274. 274.
    Siner JM, Bhandari V, Engle KM, Elias JA, Siegel MD (2009) Elevated serum angiopoietin 2 levels are associated with increased mortality in sepsis. Shock 31:348–353PubMedGoogle Scholar
  275. 275.
    David S, Mukherjee A, Ghosh CC, Yano M, Khankin EV et al (2012) Angiopoietin-2 may contribute to multiple organ dysfunction and death in sepsis*. Crit Care Med 40:3034–3041PubMedPubMedCentralGoogle Scholar
  276. 276.
    Davis JS, Yeo TW, Piera KA, Woodberry T, Celermajer DS et al (2010) Angiopoietin-2 is increased in sepsis and inversely associated with nitric oxide-dependent microvascular reactivity. Crit Care 14:R89PubMedPubMedCentralGoogle Scholar
  277. 277.
    Kumpers P, Lukasz A, David S, Horn R, Hafer C et al (2008) Excess circulating angiopoietin-2 is a strong predictor of mortality in critically ill medical patients. Crit Care 12:R147PubMedPubMedCentralGoogle Scholar
  278. 278.
    Giuliano JS Jr, Lahni PM, Harmon K, Wong HR, Doughty LA et al (2007) Admission angiopoietin levels in children with septic shock. Shock 28:650–654PubMedPubMedCentralGoogle Scholar
  279. 279.
    Agrawal A, Matthay MA, Kangelaris KN, Stein J, Chu JC et al (2013) Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am J Respir Crit Care Med 187:736–742PubMedPubMedCentralGoogle Scholar
  280. 280.
    Ganter MT, Cohen MJ, Brohi K, Chesebro BB, Staudenmayer KL et al (2008) Angiopoietin-2, marker and mediator of endothelial activation with prognostic significance early after trauma? Ann Surg 247:320–326PubMedGoogle Scholar
  281. 281.
    Kranidioti H, Orfanos SE, Vaki I, Kotanidou A, Raftogiannis M et al (2009) Angiopoietin-2 is increased in septic shock: evidence for the existence of a circulating factor stimulating its release from human monocytes. Immunol Lett 125:65–71PubMedGoogle Scholar
  282. 282.
    van der Heijden M, van Nieuw Amerongen GP, van Hinsbergh VW, Groeneveld AB (2010) The interaction of soluble Tie2 with angiopoietins and pulmonary vascular permeability in septic and nonseptic critically ill patients. Shock 33:263–268PubMedGoogle Scholar
  283. 283.
    Jesmin S, Wada T, Gando S, Sultana SS, Zaedi S (2013) The dynamics of angiogenic factors and their soluble receptors in relation to organ dysfunction in disseminated intravascular coagulation associated with sepsis. Inflammation 36:186–196PubMedGoogle Scholar
  284. 284.
    Pickkers P, Sprong T, Eijk L, Hoeven H, Smits P et al (2005) Vascular endothelial growth factor is increased during the first 48 hours of human septic shock and correlates with vascular permeability. Shock 24:508–512PubMedGoogle Scholar
  285. 285.
    Karlsson S, Pettila V, Tenhunen J, Lund V, Hovilehto S et al (2008) Vascular endothelial growth factor in severe sepsis and septic shock. Anesth Analg 106:1820–1826PubMedGoogle Scholar
  286. 286.
    Yang KY, Liu KT, Chen YC, Chen CS, Lee YC et al (2011) Plasma soluble vascular endothelial growth factor receptor-1 levels predict outcomes of pneumonia-related septic shock patients: a prospective observational study. Crit Care 15:R11PubMedPubMedCentralGoogle Scholar
  287. 287.
    Hamalainen S, Juutilainen A, Matinlauri I, Kuittinen T, Ruokonen E et al (2009) Serum vascular endothelial growth factor in adult haematological patients with neutropenic fever: a comparison with C-reactive protein. Eur J Haematol 83:251–257PubMedGoogle Scholar
  288. 288.
    Pittet JF, Morel DR, Hemsen A, Gunning K, Lacroix JS et al (1991) Elevated plasma endothelin-1 concentrations are associated with the severity of illness in patients with sepsis. Ann Surg 213:261–264PubMedPubMedCentralGoogle Scholar
  289. 289.
    Takakuwa T, Endo S, Nakae H, Kikichi M, Suzuki T et al (1994) Plasma levels of TNF-alpha, endothelin-1 and thrombomodulin in patients with sepsis. Res Commun Chem Pathol Pharmacol 84:261–269PubMedGoogle Scholar
  290. 290.
    Nakae H, Endo S, Inada K, Yamada Y, Takakuwa T et al (1996) Plasma levels of endothelin-1 and thrombomodulin in burn patients. Burns 22:594–597PubMedGoogle Scholar
  291. 291.
    Tschaikowsky K, Sagner S, Lehnert N, Kaul M, Ritter J (2000) Endothelin in septic patients: effects on cardiovascular and renal function and its relationship to proinflammatory cytokines. Crit Care Med 28:1854–1860PubMedGoogle Scholar
  292. 292.
    Schuetz P, Christ-Crain M, Morgenthaler NG, Struck J, Bergmann A et al (2007) Circulating precursor levels of endothelin-1 and adrenomedullin, two endothelium-derived, counteracting substances, in sepsis. Endothelium 14:345–351PubMedPubMedCentralGoogle Scholar
  293. 293.
    Figueras-Aloy J, Gomez L, Rodriguez-Miguelez JM, Jordan Y, Salvia MD et al (2003) Plasma nitrite/nitrate and endothelin-1 concentrations in neonatal sepsis. Acta Paediatr 92:582–587PubMedGoogle Scholar
  294. 294.
    Hirata Y, Mitaka C, Sato K, Nagura T, Tsunoda Y et al (1996) Increased circulating adrenomedullin, a novel vasodilatory peptide, in sepsis. J Clin Endocrinol Metab 81:1449–1453PubMedGoogle Scholar
  295. 295.
    Nishio K, Akai Y, Murao Y, Doi N, Ueda S et al (1997) Increased plasma concentrations of adrenomedullin correlate with relaxation of vascular tone in patients with septic shock. Crit Care Med 25:953–957PubMedGoogle Scholar
  296. 296.
    Ehlenz K, Koch B, Preuss P, Simon B, Koop I et al (1997) High levels of circulating adrenomedullin in severe illness: correlation with C-reactive protein and evidence against the adrenal medulla as site of origin. Exp Clin Endocrinol Diabetes 105:156–162PubMedGoogle Scholar
  297. 297.
    Ueda S, Nishio K, Minamino N, Kubo A, Akai Y et al (1999) Increased plasma levels of adrenomedullin in patients with systemic inflammatory response syndrome. Am J Respir Crit Care Med 160:132–136PubMedGoogle Scholar
  298. 298.
    Chen YX, Li CS (2013) Prognostic value of adrenomedullin in septic patients in the ED. Am J Emerg Med 31:1017–1021PubMedGoogle Scholar
  299. 299.
    Oncel MY, Dilmen U, Erdeve O, Ozdemir R, Calisici E et al (2012) Proadrenomedullin as a prognostic marker in neonatal sepsis. Pediatr Res 72:507–512PubMedGoogle Scholar
  300. 300.
    Al Shuaibi M, Bahu RR, Chaftari AM, Al Wohoush I, Shomali W et al (2013) Pro-adrenomedullin as a novel biomarker for predicting infections and response to antimicrobials in febrile patients with hematologic malignancies. Clin Infect Dis 56:943–950PubMedGoogle Scholar
  301. 301.
    Christ-Crain M, Morgenthaler NG, Struck J, Harbarth S, Bergmann A et al (2005) Mid-regional pro-adrenomedullin as a prognostic marker in sepsis: an observational study. Crit Care 9:R816–R824PubMedPubMedCentralGoogle Scholar
  302. 302.
    Guignant C, Voirin N, Venet F, Poitevin F, Malcus C et al (2009) Assessment of pro-vasopressin and pro-adrenomedullin as predictors of 28-day mortality in septic shock patients. Intensive Care Med 35:1859–1867PubMedGoogle Scholar
  303. 303.
    Scherpereel A, Depontieu F, Grigoriu B, Cavestri B, Tsicopoulos A et al (2006) Endocan, a new endothelial marker in human sepsis. Crit Care Med 34:532–537PubMedGoogle Scholar
  304. 304.
    De Freitas CN, Legendre B, Parmentier E, Scherpereel A, Tsicopoulos A et al (2013) Identification of a 14 kDa endocan fragment generated by cathepsin G, a novel circulating biomarker in patients with sepsis. J Pharm Biomed Anal 78–79:45–51Google Scholar
  305. 305.
    Linder A, Christensson B, Herwald H, Bjorck L, Akesson P (2009) Heparin-binding protein: an early marker of circulatory failure in sepsis. Clin Infect Dis 49:1044–1050PubMedGoogle Scholar
  306. 306.
    Borgel D, Clauser S, Bornstain C, Bieche I, Bissery A et al (2006) Elevated growth-arrest-specific protein 6 plasma levels in patients with severe sepsis. Crit Care Med 34:219–222PubMedGoogle Scholar
  307. 307.
    Ekman C, Linder A, Akesson P, Dahlback B (2010) Plasma concentrations of Gas6 (growth arrest specific protein 6) and its soluble tyrosine kinase receptor sAxl in sepsis and systemic inflammatory response syndromes. Crit Care 14:R158PubMedPubMedCentralGoogle Scholar
  308. 308.
    Duswald KH, Jochum M, Schramm W, Fritz H (1985) Released granulocytic elastase: an indicator of pathobiochemical alterations in septicemia after abdominal surgery. Surgery 98:892–899PubMedGoogle Scholar
  309. 309.
    Tanaka H, Sugimoto H, Yoshioka T, Sugimoto T (1991) Role of granulocyte elastase in tissue injury in patients with septic shock complicated by multiple-organ failure. Ann Surg 213:81–85PubMedPubMedCentralGoogle Scholar
  310. 310.
    Gardinali M, Padalino P, Vesconi S, Calcagno A, Ciappellano S et al (1992) Complement activation and polymorphonuclear neutrophil leukocyte elastase in sepsis. Correlation with severity of disease. Arch Surg 127:1219–1224PubMedGoogle Scholar
  311. 311.
    Bossink AW, Groeneveld AB, Thijs LG (1999) Prediction of microbial infection and mortality in medical patients with fever: plasma procalcitonin, neutrophilic elastase-alpha1-antitrypsin, and lactoferrin compared with clinical variables. Clin Infect Dis 29:398–407PubMedGoogle Scholar
  312. 312.
    Selberg O, Hecker H, Martin M, Klos A, Bautsch W et al (2000) Discrimination of sepsis and systemic inflammatory response syndrome by determination of circulating plasma concentrations of procalcitonin, protein complement 3a, and interleukin-6. Crit Care Med 28:2793–2798PubMedGoogle Scholar
  313. 313.
    Basu RK, Standage SW, Cvijanovich NZ, Allen GL, Thomas NJ et al (2011) Identification of candidate serum biomarkers for severe septic shock-associated kidney injury via microarray. Crit Care 15:R273PubMedPubMedCentralGoogle Scholar
  314. 314.
    Hoffmann U, Bertsch T, Dvortsak E, Liebetrau C, Lang S et al (2006) Matrix-metalloproteinases and their inhibitors are elevated in severe sepsis: prognostic value of TIMP-1 in severe sepsis. Scand J Infect Dis 38:867–872PubMedGoogle Scholar
  315. 315.
    Lorente L, Martin MM, Labarta L, Diaz C, Sole-Violan J et al (2009) Matrix metalloproteinase-9, -10, and tissue inhibitor of matrix metalloproteinases-1 blood levels as biomarkers of severity and mortality in sepsis. Crit Care 13:R158PubMedPubMedCentralGoogle Scholar
  316. 316.
    Gaddnas FP, Sutinen MM, Koskela M, Tervahartiala T, Sorsa T et al (2010) Matrix-metalloproteinase-2, -8 and -9 in serum and skin blister fluid in patients with severe sepsis. Crit Care 14:R49PubMedPubMedCentralGoogle Scholar
  317. 317.
    Yazdan-Ashoori P, Liaw P, Toltl L, Webb B, Kilmer G et al (2011) Elevated plasma matrix metalloproteinases and their tissue inhibitors in patients with severe sepsis. J Crit Care 26:556–565PubMedGoogle Scholar
  318. 318.
    Lauhio A, Hastbacka J, Pettila V, Tervahartiala T, Karlsson S et al (2011) Serum MMP-8, -9 and TIMP-1 in sepsis: high serum levels of MMP-8 and TIMP-1 are associated with fatal outcome in a multicentre, prospective cohort study. Hypothetical impact of tetracyclines. Pharmacol Res 64:590–594PubMedGoogle Scholar
  319. 319.
    Tressel SL, Kaneider NC, Kasuda S, Foley C, Koukos G et al (2011) A matrix metalloprotease-PAR1 system regulates vascular integrity, systemic inflammation and death in sepsis. EMBO Mol Med 3:370–384PubMedPubMedCentralGoogle Scholar
  320. 320.
    Punyadeera C, Schneider EM, Schaffer D, Hsu HY, Joos TO et al (2010) A biomarker panel to discriminate between systemic inflammatory response syndrome and sepsis and sepsis severity. J Emerg Trauma Shock 3:26–35PubMedPubMedCentralGoogle Scholar
  321. 321.
    Vadas P (1984) Elevated plasma phospholipase A2 levels: correlation with the hemodynamic and pulmonary changes in gram-negative septic shock. J Lab Clin Med 104:873–881PubMedGoogle Scholar
  322. 322.
    Rintala EM, Nevalainen TJ (1993) Group II phospholipase A2 in sera of febrile patients with microbiologically or clinically documented infections. Clin Infect Dis 17:864–870PubMedGoogle Scholar
  323. 323.
    Takakuwa T, Endo S, Nakae H, Suzuki T, Inada K et al (1994) Relationships between plasma levels of type-II phospholipase A2, PAF-acetylhydrolase, leukotriene B4, complements, endothelin-1, and thrombomodulin in patients with sepsis. Res Commun Chem Pathol Pharmacol 84:271–281PubMedGoogle Scholar
  324. 324.
    Nyman KM, Uhl W, Forsstrom J, Buchler M, Beger HG et al (1996) Serum phospholipase A2 in patients with multiple organ failure. J Surg Res 60:7–14PubMedGoogle Scholar
  325. 325.
    Sorensen J, Kald B, Tagesson C, Lindahl M (1994) Platelet-activating factor and phospholipase A2 in patients with septic shock and trauma. Intensive Care Med 20:555–561PubMedGoogle Scholar
  326. 326.
    Endo S, Inada K, Nakae H, Takakuwa T, Yamada Y et al (1995) Plasma levels of type II phospholipase A2 and cytokines in patients with sepsis. Res Commun Mol Pathol Pharmacol 90:413–421PubMedGoogle Scholar
  327. 327.
    Yamada Y, Endo S, Kamei Y, Minato T, Yokoyama M et al (1998) Plasma levels of type II phospholipase A2 and nitrite/nitrate in patients with burns. Burns 24:513–517PubMedGoogle Scholar
  328. 328.
    Schrama AJ, de Beaufort AJ, Poorthuis BJ, Berger HM, Walther FJ (2008) Secretory phospholipase A(2) in newborn infants with sepsis. J Perinatol 28:291–296PubMedGoogle Scholar
  329. 329.
    Uusitalo-Seppala R, Peuravuori H, Koskinen P, Vahlberg T, Rintala EM (2012) Role of plasma bactericidal/permeability-increasing protein, group IIA phospholipase A(2), C-reactive protein, and white blood cell count in the early detection of severe sepsis in the emergency department. Scand J Infect Dis 44:697–704PubMedGoogle Scholar
  330. 330.
    Hattori N, Oda S, Sadahiro T, Nakamura M, Abe R et al (2009) YKL-40 identified by proteomic analysis as a biomarker of sepsis. Shock 32:393–400PubMedGoogle Scholar
  331. 331.
    Wittenhagen P, Kronborg G, Weis N, Nielsen H, Obel N et al (2004) The plasma level of soluble urokinase receptor is elevated in patients with Streptococcus pneumoniae bacteraemia and predicts mortality. Clin Microbiol Infect 10:409–415PubMedGoogle Scholar
  332. 332.
    Kornblit B, Hellemann D, Munthe-Fog L, Bonde J, Strom JJ et al (2013) Plasma YKL-40 and CHI3L1 in systemic inflammation and sepsis-experience from two prospective cohorts. Immunobiology 218:1227–1234PubMedGoogle Scholar
  333. 333.
    Accardo-Palumbo A, D’Amelio L, Pileri D, D’Arpa N, Mogavero R et al (2010) Reduction of plasma granzyme A correlates with severity of sepsis in burn patients. Burns 36:811–818PubMedGoogle Scholar
  334. 334.
    Lauw FN, Simpson AJ, Hack CE, Prins JM, Wolbink AM et al (2000) Soluble granzymes are released during human endotoxemia and in patients with severe infection due to gram-negative bacteria. J Infect Dis 182:206–213PubMedGoogle Scholar
  335. 335.
    Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891PubMedGoogle Scholar
  336. 336.
    Wilson RF, Farag A, Mammen EF, Fujii Y (1989) Sepsis and antithrombin III, prekallikrein, and fibronectin levels in surgical patients. Am Surg 55:450–456PubMedGoogle Scholar
  337. 337.
    Leithauser B, Matthias FR, Nicolai U, Voss R (1996) Hemostatic abnormalities and the severity of illness in patients at the onset of clinically defined sepsis. Possible indication of the degree of endothelial cell activation? Intensive Care Med 22:631–636PubMedGoogle Scholar
  338. 338.
    Sakr Y, Reinhart K, Hagel S, Kientopf M, Brunkhorst F (2007) Antithrombin levels, morbidity, and mortality in a surgical intensive care unit. Anesth Analg 105:715–723PubMedGoogle Scholar
  339. 339.
    Wilson RF, Mammen EF, Tyburski JG, Warsow KM, Kubinec SM (1996) Antithrombin levels related to infections and outcome. J Trauma 40:384–387PubMedGoogle Scholar
  340. 340.
    Iba T, Kidokoro A, Fukunaga M, Sugiyama K, Sawada T et al (2005) Association between the severity of sepsis and the changes in hemostatic molecular markers and vascular endothelial damage markers. Shock 23:25–29PubMedGoogle Scholar
  341. 341.
    Kinasewitz GT, Yan SB, Basson B, Comp P, Russell JA et al (2004) Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Crit Care 8:R82–R90PubMedPubMedCentralGoogle Scholar
  342. 342.
    Pettila V, Pentti J, Pettila M, Takkunen O, Jousela I (2002) Predictive value of antithrombin III and serum C-reactive protein concentration in critically ill patients with suspected sepsis. Crit Care Med 30:271–275PubMedGoogle Scholar
  343. 343.
    Okabayashi K, Wada H, Ohta S, Shiku H, Nobori T et al (2004) Hemostatic markers and the sepsis-related organ failure assessment score in patients with disseminated intravascular coagulation in an intensive care unit. Am J Hematol 76:225–229PubMedGoogle Scholar
  344. 344.
    Reade MC, Yende S, D’Angelo G, Kong L, Kellum JA et al (2009) Differences in immune response may explain lower survival among older men with pneumonia. Crit Care Med 37:1655–1662PubMedPubMedCentralGoogle Scholar
  345. 345.
    Lauterbach R, Pawlik D, Radziszewska R, Wozniak J, Rytlewski K (2006) Plasma antithrombin III and protein C levels in early recognition of late-onset sepsis in newborns. Eur J Pediatr 165:585–589PubMedGoogle Scholar
  346. 346.
    Ostrowski SR, Berg RM, Windelov NA, Meyer MA, Plovsing RR et al (2013) Coagulopathy, catecholamines, and biomarkers of endothelial damage in experimental human endotoxemia and in patients with severe sepsis: a prospective study. J Crit Care 28:586–596PubMedGoogle Scholar
  347. 347.
    Fisher CJ Jr, Yan SB (2000) Protein C levels as a prognostic indicator of outcome in sepsis and related diseases. Crit Care Med 28:S49–S56PubMedGoogle Scholar
  348. 348.
    Macias WL, Nelson DR (2004) Severe protein C deficiency predicts early death in severe sepsis. Crit Care Med 32:S223–S228PubMedGoogle Scholar
  349. 349.
    Gutovitz S, Papa L, Jimenez E, Falk J, Wieman L et al (2011) Protein C as an early biomarker to distinguish pneumonia from sepsis. J Crit Care 26(330):e339–312Google Scholar
  350. 350.
    Asakura H, Ontachi Y, Mizutani T, Kato M, Ito T et al (2001) Decreased plasma activity of antithrombin or protein C is not due to consumption coagulopathy in septic patients with disseminated intravascular coagulation. Eur J Haematol 67:170–175PubMedGoogle Scholar
  351. 351.
    Borgel D, Bornstain C, Reitsma PH, Lerolle N, Gandrille S et al (2007) A comparative study of the protein C pathway in septic and nonseptic patients with organ failure. Am J Respir Crit Care Med 176:878–885PubMedGoogle Scholar
  352. 352.
    Shaw AD, Vail GM, Haney DJ, Xie J, Williams MD (2011) Severe protein C deficiency is associated with organ dysfunction in patients with severe sepsis. J Crit Care 26:539–545PubMedGoogle Scholar
  353. 353.
    Shapiro NI, Trzeciak S, Hollander JE, Birkhahn R, Otero R et al (2009) A prospective, multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Crit Care Med 37:96–104PubMedGoogle Scholar
  354. 354.
    Iba T, Yagi Y, Kidokoro A, Fukunaga M, Fukunaga T (1995) Increased plasma levels of soluble thrombomodulin in patients with sepsis and organ failure. Surg Today 25:585–590PubMedGoogle Scholar
  355. 355.
    Boldt J, Wollbruck T, Sonneborn S, Welters A, Hempelmann G (1995) Thrombomodulin in intensive care patients. Intensive Care Med 21:645–650PubMedGoogle Scholar
  356. 356.
    Boldt J, Papsdorf M, Rothe A, Kumle B, Piper S (2000) Changes of the hemostatic network in critically ill patients–is there a difference between sepsis, trauma, and neurosurgery patients? Crit Care Med 28:445–450PubMedGoogle Scholar
  357. 357.
    Ikegami K, Suzuki Y, Yukioka T, Matsuda H, Shimazaki S (1998) Endothelial cell injury, as quantified by the soluble thrombomodulin level, predicts sepsis/multiple organ dysfunction syndrome after blunt trauma. J Trauma 44:789–794, discussion 794-785PubMedGoogle Scholar
  358. 358.
    Lin SM, Wang YM, Lin HC, Lee KY, Huang CD et al (2008) Serum thrombomodulin level relates to the clinical course of disseminated intravascular coagulation, multiorgan dysfunction syndrome, and mortality in patients with sepsis. Crit Care Med 36:683–689PubMedGoogle Scholar
  359. 359.
    Kato T, Sakai T, Kato M, Hagihara M, Hasegawa T et al (2013) Recombinant human soluble thrombomodulin administration improves sepsis-induced disseminated intravascular coagulation and mortality: a retrospective cohort study. Thromb J 11:3PubMedPubMedCentralGoogle Scholar
  360. 360.
    Pralong G, Calandra T, Glauser MP, Schellekens J, Verhoef J et al (1989) Plasminogen activator inhibitor 1: a new prognostic marker in septic shock. Thromb Haemost 61:459–462PubMedGoogle Scholar
  361. 361.
    Brandtzaeg P, Joo GB, Brusletto B, Kierulf P (1990) Plasminogen activator inhibitor 1 and 2, alpha-2-antiplasmin, plasminogen, and endotoxin levels in systemic meningococcal disease. Thromb Res 57:271–278PubMedGoogle Scholar
  362. 362.
    Madoiwa S, Nunomiya S, Ono T, Shintani Y, Ohmori T et al (2006) Plasminogen activator inhibitor 1 promotes a poor prognosis in sepsis-induced disseminated intravascular coagulation. Int J Hematol 84:398–405PubMedGoogle Scholar
  363. 363.
    Gando S, Nakanishi Y, Tedo I (1995) Cytokines and plasminogen activator inhibitor-1 in posttrauma disseminated intravascular coagulation: relationship to multiple organ dysfunction syndrome. Crit Care Med 23:1835–1842PubMedGoogle Scholar
  364. 364.
    Dofferhoff AS, Bom VJ, de Vries-Hospers HG, van Ingen J, Meer J et al (1992) Patterns of cytokines, plasma endotoxin, plasminogen activator inhibitor, and acute-phase proteins during the treatment of severe sepsis in humans. Crit Care Med 20:185–192PubMedGoogle Scholar
  365. 365.
    Kruithof E, Calandra T, Pralong G, Heumann D, Gerain J et al (1993) Evolution of plasminogen-activator inhibitor type-1 in patients with septic shock - correlation with cytokine concentrations. Fibrinolysis 7:117–121Google Scholar
  366. 366.
    Menges T, Hermans PW, Little SG, Langefeld T, Boning O et al (2001) Plasminogen-activator-inhibitor-1 4G/5G promoter polymorphism and prognosis of severely injured patients. Lancet 357:1096–1097PubMedGoogle Scholar
  367. 367.
    Garcia-Segarra G, Espinosa G, Tassies D, Oriola J, Aibar J et al (2007) Increased mortality in septic shock with the 4G/4G genotype of plasminogen activator inhibitor 1 in patients of white descent. Intensive Care Med 33:1354–1362PubMedGoogle Scholar
  368. 368.
    Robbie LA, Dummer S, Booth NA, Adey GD, Bennett B (2000) Plasminogen activator inhibitor 2 and urokinase-type plasminogen activator in plasma and leucocytes in patients with severe sepsis. Br J Haematol 109:342–348PubMedGoogle Scholar
  369. 369.
    Bagge L, Haglund O, Wallin R, Borg T, Modig J (1989) Differences in coagulation and fibrinolysis after traumatic and septic shock in man. Scand J Clin Lab Invest 49:63–72PubMedGoogle Scholar
  370. 370.
    Rubin DB, Wiener-Kronish JP, Murray JF, Green DR, Turner J et al (1990) Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in nonpulmonary sepsis syndrome. J Clin Invest 86:474–480PubMedPubMedCentralGoogle Scholar
  371. 371.
    Ware LB, Eisner MD, Thompson BT, Parsons PE, Matthay MA (2004) Significance of von Willebrand factor in septic and nonseptic patients with acute lung injury. Am J Respir Crit Care Med 170:766–772PubMedGoogle Scholar
  372. 372.
    Claus RA, Bockmeyer CL, Budde U, Kentouche K, Sossdorf M et al (2009) Variations in the ratio between von Willebrand factor and its cleaving protease during systemic inflammation and association with severity and prognosis of organ failure. Thromb Haemost 101:239–247PubMedGoogle Scholar
  373. 373.
    Christeff N, Benassayag C, Carli-Vielle C, Carli A, Nunez EA (1988) Elevated oestrogen and reduced testosterone levels in the serum of male septic shock patients. J Steroid Biochem 29:435–440PubMedGoogle Scholar
  374. 374.
    Fourrier F, Jallot A, Leclerc L, Jourdain M, Racadot A et al (1994) Sex steroid hormones in circulatory shock, sepsis syndrome, and septic shock. Circ Shock 43:171–178PubMedGoogle Scholar
  375. 375.
    Luppa P, Munker R, Nagel D, Weber M, Engelhardt D (1991) Serum androgens in intensive-care patients: correlations with clinical findings. Clin Endocrinol (Oxf) 34:305–310Google Scholar
  376. 376.
    May AK, Dossett LA, Norris PR, Hansen EN, Dorsett RC et al (2008) Estradiol is associated with mortality in critically ill trauma and surgical patients. Crit Care Med 36:62–68PubMedPubMedCentralGoogle Scholar
  377. 377.
    Baue AE, Gunther B, Hartl W, Ackenheil M, Heberer G (1984) Altered hormonal activity in severely ill patients after injury or sepsis. Arch Surg 119:1125–1132PubMedGoogle Scholar
  378. 378.
    Bornstein SR, Licinio J, Tauchnitz R, Engelmann L, Negrao AB et al (1998) Plasma leptin levels are increased in survivors of acute sepsis: associated loss of diurnal rhythm, in cortisol and leptin secretion. J Clin Endocrinol Metab 83:280–283PubMedGoogle Scholar
  379. 379.
    Arnalich F, Lopez J, Codoceo R, Jim nez M, Madero R et al (1999) Relationship of plasma leptin to plasma cytokines and human survival in sepsis and septic shock. J Infect Dis 180:908–911PubMedGoogle Scholar
  380. 380.
    Langouche L, Vander Perre S, Frystyk J, Flyvbjerg A, Hansen TK et al (2009) Adiponectin, retinol-binding protein 4, and leptin in protracted critical illness of pulmonary origin. Crit Care 13:R112PubMedPubMedCentralGoogle Scholar
  381. 381.
    Koch A, Weiskirchen R, Zimmermann HW, Sanson E, Trautwein C et al (2010) Relevance of serum leptin and leptin-receptor concentrations in critically ill patients. Mediators Inflamm 2010Google Scholar
  382. 382.
    Hillenbrand A, Knippschild U, Weiss M, Schrezenmeier H, Henne-Bruns D et al (2010) Sepsis induced changes of adipokines and cytokines - septic patients compared to morbidly obese patients. BMC Surg 10:26PubMedPubMedCentralGoogle Scholar
  383. 383.
    Yousef AA, Amr YM, Suliman GA (2010) The diagnostic value of serum leptin monitoring and its correlation with tumor necrosis factor-alpha in critically ill patients: a prospective observational study. Crit Care 14:R33PubMedPubMedCentralGoogle Scholar
  384. 384.
    Jochberger S, Morgenthaler NG, Mayr VD, Luckner G, Wenzel V et al (2006) Copeptin and arginine vasopressin concentrations in critically ill patients. J Clin Endocrinol Metab 91:4381–4386PubMedGoogle Scholar
  385. 385.
    Lee JH, Chan YH, Lai OF, Puthucheary J (2013) Vasopressin and copeptin levels in children with sepsis and septic shock. Intensive Care Med 39:747–753PubMedGoogle Scholar
  386. 386.
    Seligman R, Papassotiriou J, Morgenthaler NG, Meisner M, Teixeira PJ (2008) Copeptin, a novel prognostic biomarker in ventilator-associated pneumonia. Crit Care 12:R11PubMedPubMedCentralGoogle Scholar
  387. 387.
    Muller B, Morgenthaler N, Stolz D, Schuetz P, Muller C et al (2007) Circulating levels of copeptin, a novel biomarker, in lower respiratory tract infections. Eur J Clin Invest 37:145–152PubMedGoogle Scholar
  388. 388.
    Purhonen AK, Vanska M, Hamalainen S, Pulkki K, Lehtikangas M et al (2012) Plasma copeptin in the assessment of febrile neutropenia. Peptides 36:129–132PubMedGoogle Scholar
  389. 389.
    Morgenthaler NG, Struck J, Christ-Crain M, Bergmann A, Muller B (2005) Pro-atrial natriuretic peptide is a prognostic marker in sepsis, similar to the APACHE II score: an observational study. Crit Care 9:R37–R45PubMedPubMedCentralGoogle Scholar
  390. 390.
    Ueda S, Nishio K, Akai Y, Fukushima H, Ueyama T et al (2006) Prognostic value of increased plasma levels of brain natriuretic peptide in patients with septic shock. Shock 26:134–139PubMedGoogle Scholar
  391. 391.
    Witthaut R, Busch C, Fraunberger P, Walli A, Seidel D et al (2003) Plasma atrial natriuretic peptide and brain natriuretic peptide are increased in septic shock: impact of interleukin-6 and sepsis-associated left ventricular dysfunction. Intensive Care Med 29:1696–1702PubMedGoogle Scholar
  392. 392.
    Brueckmann M, Huhle G, Lang S, Haase KK, Bertsch T et al (2005) Prognostic value of plasma N-terminal pro-brain natriuretic peptide in patients with severe sepsis. Circulation 112:527–534PubMedGoogle Scholar
  393. 393.
    Charpentier J, Luyt CE, Fulla Y, Vinsonneau C, Cariou A et al (2004) Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis. Crit Care Med 32:660–665PubMedGoogle Scholar
  394. 394.
    Varpula M, Pulkki K, Karlsson S, Ruokonen E, Pettila V (2007) Predictive value of N-terminal pro-brain natriuretic peptide in severe sepsis and septic shock. Crit Care Med 35:1277–1283PubMedGoogle Scholar
  395. 395.
    Kerbaul F, Giorgi R, Oddoze C, Collart F, Guidon C et al (2004) High concentrations of N-BNP are related to non-infectious severe SIRS associated with cardiovascular dysfunction occurring after off-pump coronary artery surgery. Br J Anaesth 93:639–644PubMedGoogle Scholar
  396. 396.
    McLean AS, Huang SJ, Hyams S, Poh G, Nalos M et al (2007) Prognostic values of B-type natriuretic peptide in severe sepsis and septic shock. Crit Care Med 35:1019–1026PubMedGoogle Scholar
  397. 397.
    Post F, Weilemann LS, Messow CM, Sinning C, Munzel T (2008) B-type natriuretic peptide as a marker for sepsis-induced myocardial depression in intensive care patients. Crit Care Med 36:3030–3037PubMedGoogle Scholar
  398. 398.
    Pirracchio R, Deye N, Lukaszewicz AC, Mebazaa A, Cholley B et al (2008) Impaired plasma B-type natriuretic peptide clearance in human septic shock. Crit Care Med 36:2542–2546PubMedGoogle Scholar
  399. 399.
    Kandil E, Burack J, Sawas A, Bibawy H, Schwartzman A et al (2008) B-type natriuretic peptide: a biomarker for the diagnosis and risk stratification of patients with septic shock. Arch Surg 143:242–246, discussion 246PubMedGoogle Scholar
  400. 400.
    Chen Y, Li C (2009) Prognostic significance of brain natriuretic peptide obtained in the ED in patients with SIRS or sepsis. Am J Emerg Med 27:701–706PubMedGoogle Scholar
  401. 401.
    Perman SM, Chang AM, Hollander JE, Gaieski DF, Trzeciak S et al (2011) Relationship between B-type natriuretic peptide and adverse outcome in patients with clinical evidence of sepsis presenting to the emergency department. Acad Emerg Med 18:219–222PubMedGoogle Scholar
  402. 402.
    Hama N, Itoh H, Shirakami G, Suga S, Komatsu Y et al (1994) Detection of C-type natriuretic peptide in human circulation and marked increase of plasma CNP level in septic shock patients. Biochem Biophys Res Commun 198:1177–1182PubMedGoogle Scholar
  403. 403.
    Bahrami S, Pelinka L, Khadem A, Maitzen S, Hawa G et al (2010) Circulating NT-proCNP predicts sepsis in multiple-traumatized patients without traumatic brain injury. Crit Care Med 38:161–166PubMedGoogle Scholar
  404. 404.
    Koch A, Voigt S, Sanson E, Duckers H, Horn A et al (2011) Prognostic value of circulating amino-terminal pro-C-type natriuretic peptide in critically ill patients. Crit Care 15:R45PubMedPubMedCentralGoogle Scholar
  405. 405.
    Rubli E, Bussard S, Frei E, Lundsgaard-Hansen P, Pappova E (1983) Plasma fibronectin and associated variables in surgical intensive care patients. Ann Surg 197:310–317PubMedPubMedCentralGoogle Scholar
  406. 406.
    Ekindjian OG, Marien M, Wassermann D, Bruxelle J, Cazalet C et al (1984) Plasma fibronectin time course in burned patients: influence of sepsis. J Trauma 24:214–219PubMedGoogle Scholar
  407. 407.
    Blanco A, Guisasola JA, Solis P, Bachiller R, Gonzalez H (1990) Fibronectin in meningococcal sepsis. Correlation with antithrombin III and protein C. Acta Paediatr Scand 79:73–76PubMedGoogle Scholar
  408. 408.
    Ruiz Martin G, Prieto Prieto J, Veiga de Cabo J, Gomez Lus L, Barberan J et al (2004) Plasma fibronectin as a marker of sepsis. Int J Infect Dis 8:236–243PubMedGoogle Scholar
  409. 409.
    Glattard E, Welters ID, Lavaux T, Muller AH, Laux A et al (2010) Endogenous morphine levels are increased in sepsis: a partial implication of neutrophils. PLoS One 5:e8791PubMedPubMedCentralGoogle Scholar
  410. 410.
    Sakr Y, Reinhart K, Bloos F, Marx G, Russwurm S et al (2007) Time course and relationship between plasma selenium concentrations, systemic inflammatory response, sepsis, and multiorgan failure. Br J Anaesth 98:775–784PubMedGoogle Scholar
  411. 411.
    Vaschetto R, Nicola S, Olivieri C, Boggio E, Piccolella F et al (2008) Serum levels of osteopontin are increased in SIRS and sepsis. Intensive Care Med 34:2176–2184PubMedGoogle Scholar
  412. 412.
    Wang H, Cheng B, Chen Q, Wu S, Lv C et al (2008) Time course of plasma gelsolin concentrations during severe sepsis in critically ill surgical patients. Crit Care 12:R106PubMedPubMedCentralGoogle Scholar
  413. 413.
    Stove S, Welte T, Wagner TO, Kola A, Klos A et al (1996) Circulating complement proteins in patients with sepsis or systemic inflammatory response syndrome. Clin Diagn Lab Immunol 3:175–183PubMedPubMedCentralGoogle Scholar
  414. 414.
    Wolk K, Döcke WD, von Baehr V, Volk HD, Sabat R (2000) Impaired antigen presentation by human monocytes during endotoxin tolerance. Blood 96(1):218–223PubMedGoogle Scholar
  415. 415.
    Cavaillon JM, Adib-Conquy M (2006) Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit Care 10:233PubMedPubMedCentralGoogle Scholar
  416. 416.
    Hershman MJ, Cheadle WG, Wellhausen SR, Davidon P, Polk HC (1990) Monocyte HLA-DR antigen expression characterizes clinical outcome in the trauma patients. Br J Surg 77:204–207PubMedGoogle Scholar
  417. 417.
    Kim OY, Monsel A, Bertrand M, Coriat P, Cavaillon JM et al (2010) Differential down-regulation of HLA-DR on monocyte subpopulations during systemic inflammation. Crit Care 14:R61PubMedPubMedCentralGoogle Scholar
  418. 418.
    Fumeaux T, Pugin J (2002) Role of interleukin-10 in the intracellular sequestration of human leukocyte antigen-DR in monocytes during septic shock. Am J Respir Crit Care Med 166:1475–1482PubMedGoogle Scholar
  419. 419.
    Le Tulzo Y, Pangault C, Amiot L, Guilloux V, Tribut O et al (2004) Monocyte human leukocyte antigen-DR transcriptional downregulation by cortisol during septic shock. Am J Respir Crit Care Med 169:1144–1151PubMedGoogle Scholar
  420. 420.
    Ditschkowski M, Kreuzfelder E, Rebmann V, Ferencik S, Majetschak M et al (1999) HLA-DR expression and soluble HLA-DR levels in septic patients after trauma. Ann Surg 229:246–254PubMedPubMedCentralGoogle Scholar
  421. 421.
    Tschaikowsky K, Hedwig-Geissing M, Schiele A, Bremer F, Schywalsky M et al (2002) Coincidence of pro- and anti-inflammatory responses in the early phase of severe sepsis: longitudinal study of mononuclear histocompatibility leukocyte antigen-DR expression, procalcitonin, C-reactive protein, and changes in T-cell subsets in septic and postoperative patients. Crit Care Med 30:1015–1023PubMedGoogle Scholar
  422. 422.
    Perry SE, Mostafa SM, Wenstone R, Shenkin A, McLaughlin PJ (2003) Is low monocyte HLA-DR expression helpful to predict outcome in severe sepsis? Intensive Care Med 29:1245–1252PubMedGoogle Scholar
  423. 423.
    Muehlstedt SG, Lyte M, Rodriguez JL (2002) Increased IL-10 production and HLA-DR suppression in the lungs of injured patients precede the development of nosocomial pneumonia. Shock 17:443–450PubMedGoogle Scholar
  424. 424.
    Cheadle WG, Hershman MJ, Wellhausen SR, Polk HC Jr (1991) HLA-DR antigen expression on peripheral blood monocytes correlates with surgical infection. Am J Surg 161:639–645PubMedGoogle Scholar
  425. 425.
    van den Berk JM, Oldenburger RH, van den Berg AP, Klompmaker IJ, Mesander G et al (1997) Low HLA-DR expression on monocytes as a prognostic marker for bacterial sepsis after liver transplantation. Transplantation 63:1846–1848PubMedGoogle Scholar
  426. 426.
    Satoh A, Miura T, Satoh K, Masamune A, Yamagiwa T et al (2002) Human leukocyte antigen-DR expression on peripheral monocytes as a predictive marker of sepsis during acute pancreatitis. Pancreas 25:245–250PubMedGoogle Scholar
  427. 427.
    Venet F, Tissot S, Debard AL, Faudot C, Crampe C et al (2007) Decreased monocyte human leukocyte antigen-DR expression after severe burn injury: correlation with severity and secondary septic shock. Crit Care Med 35:1910–1917PubMedGoogle Scholar
  428. 428.
    Strohmeyer JC, Blume C, Meisel C, Doecke WD, Hummel M et al (2003) Standardized immune monitoring for the prediction of infections after cardiopulmonary bypass surgery in risk patients. Cytometry B Clin Cytom 53:54–62PubMedGoogle Scholar
  429. 429.
    Monneret G, Lepape A, Voirin N, Bohe J, Venet F et al (2006) Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Med 32:1175–1183PubMedGoogle Scholar
  430. 430.
    Lukaszewicz AC, Grienay M, Resche-Rigon M, Pirracchio R, Faivre V et al (2009) Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction. Crit Care Med 37:2746–2752PubMedGoogle Scholar
  431. 431.
    Cheron A, Floccard B, Allaouchiche B, Guignant C, Poitevin F et al (2010) Lack of recovery in monocyte human leukocyte antigen-DR expression is independently associated with the development of sepsis after major trauma. Crit Care 14:R208PubMedPubMedCentralGoogle Scholar
  432. 432.
    Landelle C, Lepape A, Voirin N, Tognet E, Venet F et al (2010) Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. Intensive Care Med 36:1859–1866PubMedGoogle Scholar
  433. 433.
    Medzhitov R, Preston-Hurlburt P, Janeway CA (1997) A human homologue of the Drosophila Toll protein signals activation of adaptative immunity. Nature 388:394–397PubMedGoogle Scholar
  434. 434.
    Wittebole X, Coyle SM, Kumar A, Goshima M, Lowry SF et al (2005) Expression of tumour necrosis factor receptor and Toll-like receptor 2 and 4 on peripheral blood leucocytes of human volunteers after endotoxin challenge: a comparison of flow cytometric light scatter and immunofluorescence gating. Clin Exp Immunol 141:99–106PubMedPubMedCentralGoogle Scholar
  435. 435.
    Harter L, Mica L, Stocker R, Trentz O, Keel M (2004) Increased expression of toll-like receptor-2 and -4 on leukocytes from patients with sepsis. Shock 22:403–409PubMedGoogle Scholar
  436. 436.
    Brandl K, Gluck T, Huber C, Salzberger B, Falk W et al (2005) TLR-4 surface display on human monocytes is increased in septic patients. Eur J Med Res 10:319–324PubMedGoogle Scholar
  437. 437.
    Tsujimoto H, Ono S, Majima T, Efron PA, Kinoshita M et al (2006) Differential toll-like receptor expression after ex vivo lipopolysaccharide exposure in patients with sepsis and following surgical stress. Clin Immunol 119:180–187PubMedGoogle Scholar
  438. 438.
    Tsujimoto H, Ono S, Majima T, Kawarabayashi N, Takayama E et al (2005) Neutrophil elastase, MIP-2, and TLR-4 expression during human and experimental sepsis. Shock 23:39–44PubMedGoogle Scholar
  439. 439.
    Viemann D, Dubbel G, Schleifenbaum S, Harms E, Sorg C et al (2005) Expression of toll-like receptors in neonatal sepsis. Pediatr Res 58:654–659PubMedGoogle Scholar
  440. 440.
    Ono S, Tsujimoto H, Hiraki S, Takahata R, Kinoshita M et al (2005) Sex differences in cytokine production and surface antigen expression of peripheral blood mononuclear cells after surgery. Am J Surg 190:439–444PubMedGoogle Scholar
  441. 441.
    Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J et al (2002) Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol 169:4697–4701PubMedGoogle Scholar
  442. 442.
    Armstrong L, Medford AR, Hunter KJ, Uppington KM, Millar AB (2004) Differential expression of Toll-like receptor (TLR)-2 and TLR-4 on monocytes in human sepsis. Clin Exp Immunol 136:312–319PubMedPubMedCentralGoogle Scholar
  443. 443.
    Martins PS, Brunialti MK, Martos LS, Machado FR, Assuncao MS et al (2008) Expression of cell surface receptors and oxidative metabolism modulation in the clinical continuum of sepsis. Crit Care 12:R25PubMedPubMedCentralGoogle Scholar
  444. 444.
    Adib-Conquy M, Moine P, Asehnoune K, Edouard A, Espevik T et al (2003) Toll-like receptor-mediated tumor necrosis factor and interleukin-10 production differ during systemic inflammation. Am J Respir Crit Care Med 168:158–164PubMedGoogle Scholar
  445. 445.
    Souza-Fonseca-Guimaraes F, Parlato M, Philippart F, Misset B, Cavaillon JM et al (2012) Toll-like receptors expression and interferon-gamma production by NK cells in human sepsis. Crit Care 16:R206PubMedPubMedCentralGoogle Scholar
  446. 446.
    Brunialti MK, Martins PS, Barbosa de Carvalho H, Machado FR, Barbosa LM et al (2006) TLR2, TLR4, CD14, CD11B, and CD11C expressions on monocytes surface and cytokine production in patients with sepsis, severe sepsis, and septic shock. Shock 25:351–357PubMedGoogle Scholar
  447. 447.
    Aalto H, Takala A, Kautiainen H, Siitonen S, Repo H (2007) Monocyte CD14 and soluble CD14 in predicting mortality of patients with severe community acquired infection. Scand J Infect Dis 39:596–603PubMedGoogle Scholar
  448. 448.
    Schaaf B, Luitjens K, Goldmann T, van Bremen T, Sayk F et al (2009) Mortality in human sepsis is associated with downregulation of Toll-like receptor 2 and CD14 expression on blood monocytes. Diagn Pathol 4:12PubMedPubMedCentralGoogle Scholar
  449. 449.
    Monneret G, Debard AL, Venet F, Bohe J, Hequet O et al (2003) Marked elevation of human circulating CD4 + CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med 31:2068–2071PubMedGoogle Scholar
  450. 450.
    Venet F, Pachot A, Debard AL, Bohe J, Bienvenu J et al (2004) Increased percentage of CD4 + CD25+ regulatory T cells during septic shock is due to the decrease of CD4 + CD25- lymphocytes. Crit Care Med 32:2329–2331PubMedGoogle Scholar
  451. 451.
    Venet F, Chung CS, Kherouf H, Geeraert A, Malcus C et al (2009) Increased circulating regulatory T cells (CD4(+)CD25 (+)CD127 (-)) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med 35:678–686PubMedPubMedCentralGoogle Scholar
  452. 452.
    Hein F, Massin F, Cravoisy-Popovic A, Barraud D, Levy B et al (2010) The relationship between CD4 + CD25 + CD127- regulatory T cells and inflammatory response and outcome during shock states. Crit Care 14:R19PubMedPubMedCentralGoogle Scholar
  453. 453.
    Leng FY, Liu JL, Liu ZJ, Yin JY, Qu HP (2013) Increased proportion of CD4(+)CD25(+)Foxp3(+) regulatory T cells during early-stage sepsis in ICU patients. J Microbiol Immunol Infect 46:338–344PubMedGoogle Scholar
  454. 454.
    Sugimoto K, Galle C, Preiser JC, Creteur J, Vincent JL et al (2003) Monocyte CD40 expression in severe sepsis. Shock 19:24–27PubMedGoogle Scholar
  455. 455.
    Nolan A, Weiden M, Kelly A, Hoshino Y, Hoshino S et al (2008) CD40 and CD80/86 act synergistically to regulate inflammation and mortality in polymicrobial sepsis. Am J Respir Crit Care Med 177:301–308PubMedPubMedCentralGoogle Scholar
  456. 456.
    Katsuura M, Shimizu Y, Akiba K, Kanazawa C, Mitsui T et al (1998) CD48 expression on leukocytes in infectious diseases: flow cytometric analysis of surface antigen. Acta Paediatr Jpn 40:580–585PubMedGoogle Scholar
  457. 457.
    Lewis SM, Treacher DF, Bergmeier L, Brain SD, Chambers DJ et al (2009) Plasma from patients with sepsis up-regulates the expression of CD49d and CD64 on blood neutrophils. Am J Respir Cell Mol Biol 40:724–732PubMedGoogle Scholar
  458. 458.
    Bhandari V, Wang C, Rinder C, Rinder H (2008) Hematologic profile of sepsis in neonates: neutrophil CD64 as a diagnostic marker. Pediatrics 121:129–134PubMedGoogle Scholar
  459. 459.
    Groselj-Grenc M, Ihan A, Pavcnik-Arnol M, Kopitar AN, Gmeiner-Stopar T et al (2009) Neutrophil and monocyte CD64 indexes, lipopolysaccharide-binding protein, procalcitonin and C-reactive protein in sepsis of critically ill neonates and children. Intensive Care Med 35:1950–1958PubMedGoogle Scholar
  460. 460.
    Streimish I, Bizzarro M, Northrup V, Wang C, Renna S et al (2014) Neutrophil CD64 with Hematologic Criteria for Diagnosis of Neonatal Sepsis. Am J Perinatol 31:21–30PubMedGoogle Scholar
  461. 461.
    Cardelli P, Ferraironi M, Amodeo R, Tabacco F, De Blasi RA et al (2008) Evaluation of neutrophil CD64 expression and procalcitonin as useful markers in early diagnosis of sepsis. Int J Immunopathol Pharmacol 21:43–49PubMedGoogle Scholar
  462. 462.
    Gibot S, Bene MC, Noel R, Massin F, Guy J et al (2012) Combination biomarkers to diagnose sepsis in the critically ill patient. Am J Respir Crit Care Med 186:65–71PubMedGoogle Scholar
  463. 463.
    Gros A, Roussel M, Sauvadet E, Gacouin A, Marque S et al (2012) The sensitivity of neutrophil CD64 expression as a biomarker of bacterial infection is low in critically ill patients. Intensive Care Med 38:445–452PubMedGoogle Scholar
  464. 464.
    Dimoula A, Pradier O, Kassengera Z, Dalcomune D, Turkan H et al (2014) Serial determinations of neutrophil CD64 expression for the diagnosis and monitoring of sepsis in critically ill patients. Clin Infect Dis 58(6):820–9PubMedGoogle Scholar
  465. 465.
    Schwulst SJ, Muenzer JT, Chang KC, Brahmbhatt TS, Coopersmith CM et al (2008) Lymphocyte phenotyping to distinguish septic from nonseptic critical illness. J Am Coll Surg 206:335–342PubMedGoogle Scholar
  466. 466.
    Roger PM, Hyvernat H, Ticchioni M, Kumar G, Dellamonica J et al (2012) The early phase of human sepsis is characterized by a combination of apoptosis and proliferation of T cells. J Crit Care 27:384–393PubMedGoogle Scholar
  467. 467.
    de Pablo R, Monserrat J, Torrijos C, Martin M, Prieto A et al (2012) The predictive role of early activation of natural killer cells in septic shock. Crit Care 16:413PubMedPubMedCentralGoogle Scholar
  468. 468.
    Bouchon A, Facchetti F, Weigand MA, Colonna M (2001) TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410:1103–1107PubMedGoogle Scholar
  469. 469.
    Gibot S, Le Renard PE, Bollaert PE, Kolopp-Sarda MN, Bene MC et al (2005) Surface triggering receptor expressed on myeloid cells 1 expression patterns in septic shock. Intensive Care Med 31:594–597PubMedGoogle Scholar
  470. 470.
    Ferat-Osorio E, Esquivel-Callejas N, Wong-Baeza I, Aduna-Vicente R, Arriaga-Pizano L et al (2008) The increased expression of TREM-1 on monocytes is associated with infectious and noninfectious inflammatory processes. J Surg Res 150:110–117PubMedGoogle Scholar
  471. 471.
    Poukoulidou T, Spyridaki A, Mihailidou I, Kopterides P, Pistiki A et al (2011) TREM-1 expression on neutrophils and monocytes of septic patients: relation to the underlying infection and the implicated pathogen. BMC Infect Dis 11:309PubMedPubMedCentralGoogle Scholar
  472. 472.
    Pachot A, Lepape A, Vey S, Bienvenu J, Mougin B et al (2006) Systemic transcriptional analysis in survivor and non-survivor septic shock patients: a preliminary study. Immunol Lett 106:63–71PubMedGoogle Scholar
  473. 473.
    Pachot A, Cazalis MA, Venet F, Turrel F, Faudot C et al (2008) Decreased expression of the fractalkine receptor CX3CR1 on circulating monocytes as new feature of sepsis-induced immunosuppression. J Immunol 180:6421–6429PubMedGoogle Scholar
  474. 474.
    Huang X, Venet F, Wang YL, Lepape A, Yuan Z et al (2009) PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci U S A 106:6303–6308PubMedPubMedCentralGoogle Scholar
  475. 475.
    Guignant C, Lepape A, Huang X, Kherouf H, Denis L et al (2011) Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit Care 15:R99PubMedPubMedCentralGoogle Scholar
  476. 476.
    Zhang Y, Li J, Lou J, Zhou Y, Bo L et al (2011) Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. Crit Care 15:R70PubMedPubMedCentralGoogle Scholar
  477. 477.
    Monaghan SF, Thakkar RK, Tran ML, Huang X, Cioffi WG et al (2012) Programmed death 1 expression as a marker for immune and physiological dysfunction in the critically ill surgical patient. Shock 38:117–122PubMedGoogle Scholar
  478. 478.
    Shubin NJ, Monaghan SF, Heffernan DS, Chung CS, Ayala A (2013) B and T lymphocyte attenuator expression on CD4+ T-cells associates with sepsis and subsequent infections in ICU patients. Crit Care 17:R276PubMedPubMedCentralGoogle Scholar
  479. 479.
    Hauser CJ, Lagoo S, Lagoo A, Hale E, Hardy KJ et al (1995) Human peripheral mononuclear cells do not show proinflammatory patterns of cytokine transcription in early trauma: a preliminary report. Shock 4:247–250PubMedGoogle Scholar
  480. 480.
    Ramilo O, Allman W, Chung W, Mejias A, Ardura M et al (2007) Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood 109:2066–2077PubMedPubMedCentralGoogle Scholar
  481. 481.
    Tang BM, McLean AS, Dawes IW, Huang SJ, Cowley MJ et al (2008) Gene-expression profiling of gram-positive and gram-negative sepsis in critically ill patients. Crit Care Med 36:1125–1128PubMedGoogle Scholar
  482. 482.
    Johnson SB, Lissauer M, Bochicchio GV, Moore R, Cross AS et al (2007) Gene expression profiles differentiate between sterile SIRS and early sepsis. Ann Surg 245:611–621PubMedPubMedCentralGoogle Scholar
  483. 483.
    Tang BM, McLean AS, Dawes IW, Huang SJ, Lin RC (2009) Gene-expression profiling of peripheral blood mononuclear cells in sepsis. Crit Care Med 37:882–888PubMedGoogle Scholar
  484. 484.
    Wong HR, Cvijanovich N, Allen GL, Lin R, Anas N et al (2009) Genomic expression profiling across the pediatric systemic inflammatory response syndrome, sepsis, and septic shock spectrum. Crit Care Med 37:1558–1566PubMedPubMedCentralGoogle Scholar
  485. 485.
    Tang BM, McLean AS, Dawes IW, Huang SJ, Lin RC (2007) The use of gene-expression profiling to identify candidate genes in human sepsis. Am J Respir Crit Care Med 176:676–684PubMedGoogle Scholar
  486. 486.
    Hinrichs C, Kotsch K, Buchwald S, Habicher M, Saak N et al (2010) Perioperative gene expression analysis for prediction of postoperative sepsis. Clin Chem 56:613–622PubMedGoogle Scholar
  487. 487.
    Bauer M, Giamarellos-Bourboulis E, Kortgen A, Möller E, Felsmann K, et al. (submitted) A transcriptomic biomarker to quantify systemic inflammation of sepsisGoogle Scholar
  488. 488.
    Wynn JL, Cvijanovich NZ, Allen GL, Thomas NJ, Freishtat RJ et al (2011) The influence of developmental age on the early transcriptomic response of children with septic shock. Mol Med 17:1146–1156PubMedPubMedCentralGoogle Scholar
  489. 489.
    Tang BM, Huang SJ, McLean AS (2010) Genome-wide transcription profiling of human sepsis: a systematic review. Crit Care 14:R237PubMedPubMedCentralGoogle Scholar
  490. 490.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedGoogle Scholar
  491. 491.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedPubMedCentralGoogle Scholar
  492. 492.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486PubMedPubMedCentralGoogle Scholar
  493. 493.
    Nahid MA, Pauley KM, Satoh M, Chan EK (2009) miR-146a is critical for endotoxin-induced tolerance: implication in innate immunity. J Biol Chem 284:34590–34599Google Scholar
  494. 494.
    Rossato M, Curtale G, Tamassia N, Castellucci M, Mori L et al (2012) IL-10-induced microRNA-187 negatively regulates TNF-alpha, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci U S A 109:E3101–E3110PubMedPubMedCentralGoogle Scholar
  495. 495.
    Wang JF, Yu ML, Yu G, Bian JJ, Deng XM et al (2010) Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun 394:184–188PubMedGoogle Scholar
  496. 496.
    Wang L, Wang HC, Chen C, Zeng J, Wang Q et al (2013) Differential expression of plasma miR-146a in sepsis patients compared with non-sepsis-SIRS patients. Exp Ther Med 5:1101–1104PubMedPubMedCentralGoogle Scholar
  497. 497.
    Wang H, Zhang P, Chen W, Feng D, Jia Y et al (2012) Serum microRNA signatures identified by Solexa sequencing predict sepsis patients’ mortality: a prospective observational study. PLoS One 7:e38885PubMedPubMedCentralGoogle Scholar
  498. 498.
    Wang H, Zhang P, Chen W, Feng D, Jia Y et al (2012) Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects. Clin Chem Lab Med 50:1423–1428PubMedGoogle Scholar
  499. 499.
    Schmidt WM, Spiel AO, Jilma B, Wolzt M, Muller M (2009) In vivo profile of the human leukocyte microRNA response to endotoxemia. Biochem Biophys Res Commun 380:437–441PubMedGoogle Scholar
  500. 500.
    Vasilescu C, Rossi S, Shimizu M, Tudor S, Veronese A et al (2009) MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS One 4:e7405PubMedPubMedCentralGoogle Scholar
  501. 501.
    Ma Y, Vilanova D, Atalar K, Delfour O, Edgeworth J et al (2013) Genome-wide sequencing of cellular microRNAs identifies a combinatorial expression signature diagnostic of sepsis. PLoS One 8:e75918PubMedPubMedCentralGoogle Scholar
  502. 502.
    Roderburg C, Luedde M, Vargas Cardenas D, Vucur M, Scholten D et al (2013) Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis. PLoS One 8:e54612PubMedPubMedCentralGoogle Scholar
  503. 503.
    Tacke F, Roderburg C, Benz F, Cardenas DV, Luedde M et al (2014) Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Crit Care Med 42(5):1096–104PubMedGoogle Scholar
  504. 504.
    Hurr H, Hawley HB, Czachor JS, Markert RJ, McCarthy MC (1999) APACHE II and ISS scores as predictors of nosocomial infections in trauma patients. Am J Infect Control 27:79–83PubMedGoogle Scholar
  505. 505.
    Angeletti S, Battistoni F, Fioravanti M, Bernardini S, Dicuonzo G (2013) Procalcitonin and mid-regional pro-adrenomedullin test combination in sepsis diagnosis. Clin Chem Lab Med 51:1059–1067PubMedGoogle Scholar
  506. 506.
    Casserly B, Read R, Levy MM (2011) Multimarker panels in sepsis. Crit Care Clin 27:391–405PubMedGoogle Scholar
  507. 507.
    Waage A, Espevik T, Lamvik J (1986) Detection of tumour necrosis factor-like cytotoxicity in serum from patients with septicaemia but not from untreated cancer patients. Scand J Immunol 24(6):739–743PubMedGoogle Scholar
  508. 508.
    Marchant A, Devière J, Byl B, De Groote D, Vincent JL et al (1994) Interleukin-10 production during septicaemia. Lancet 343(8899):707–708PubMedGoogle Scholar
  509. 509.
    Waring PM, Presneill J, Maher DW, Layton JE, Cebon J et al (1995) Differential alterations in plasma colony-stimulating factor concentrations in meningococcaemia. Clin Exp Immunol 102(3):501–506PubMedPubMedCentralGoogle Scholar
  510. 510.
    DiPiro JT, Howdieshell TR, Goddard JK, Callaway DB, Hamilton RG et al (1995) Association of interleukin-4 plasma levels with traumatic injury and clinical course. Arch Surg 130(11):1159–1162PubMedGoogle Scholar
  511. 511.
    Zeni F, Vindimian M, Pain P, Gery P, Tardy B et al (1995) Antiinflammatory and proinflammatory cytokines in patients with severe sepsis. J Infect Dis 172(4):1171–1172PubMedGoogle Scholar
  512. 512.
    Marie C, Cavaillon JM, Losser MR (1996) Elevated levels of circulating transforming growth factor-beta 1 in patients with the sepsis syndrome. Ann Intern Med 125(6):520–521PubMedGoogle Scholar
  513. 513.
    Sriskandan S, Moyes D, Cohen J (1996) Detection of circulating bacterial superantigen and lymphotoxin-alpha in patients with streptococcal toxic-shock syndrome. Lancet 348(9037):1315–1316PubMedGoogle Scholar
  514. 514.
    Bingold TM, Ziesché E, Scheller B, Sadik CD, Franck K et al (2010) Interleukin-22 detected in patients with abdominal sepsis. Shock 34(4):337–340PubMedGoogle Scholar
  515. 515.
    Kasai T, Inada K, Takakuwa T, Yamada Y, Inoue Y et al (1997) Anti-inflammatory cytokine levels in patients with septic shock. Res Commun Mol Pathol Pharmacol 98(1):34–42PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Unit of Cytokines and InflammationInstitut PasteurParis Cedex 15France

Personalised recommendations