Skip to main content

Assessing GPCR and G Protein Signaling to the Nucleus in Live Cells Using Fluorescent Biosensors

  • Protocol
  • First Online:
Nuclear G-Protein Coupled Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1234))

  • 1828 Accesses

Abstract

G protein-coupled receptor (GPCR) signaling cascades regulate a wide variety of cellular processes and feature prominently in many cardiovascular pathologies. As such they represent major drug targets and discovering novel aspects of GPCR signaling provide important opportunities to identify additional potential therapeutic approaches to reverse or prevent cardiac remodeling and failure. Monitoring cellular trafficking of signaling components and specific protein kinase activities using fluorescent biosensors has provided key insight into stress/GPCR-induced kinase signaling networks and their effect on cardiac gene expression. Herein we describe the protocols for the expression, visualization (by confocal microscopy), and interpretation of data obtained with such biosensors expressed in adult cardiomyocytes. Our focus is on the cellular trafficking of class II histone deacetylases (i.e., HDAC5) and on the FRET sensor (Camui) for calmodulin-dependent protein kinase II (CaMKII).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salazar NC, Chen J, Rockman HA (2007) Cardiac GPCRs: GPCR signaling in healthy and failing hearts. Biochim Biophys Acta 1768:1006–1018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582

    Article  CAS  PubMed  Google Scholar 

  3. Backs J, Olson EN (2006) Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98:15–24

    Article  CAS  PubMed  Google Scholar 

  4. McKinsey TA (2007) Derepression of pathological cardiac genes by members of the CaM kinase superfamily. Cardiovasc Res 73:667–677

    Article  CAS  PubMed  Google Scholar 

  5. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Eom GH, Kook H (2014) Posttranslational modifications of histone deacetylases: implications for cardiovascular diseases. Pharmacol Ther 143:168–180. doi:10.1016/j.pharmthera.2014.02.012

    Article  CAS  PubMed  Google Scholar 

  7. McKinsey TA, Zhang CL, Lu J et al (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111

    Article  CAS  PubMed  Google Scholar 

  8. McKinsey TA, Zhang CL, Olson EN (2000) Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A 97:14400–14405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Zhang CL, McKinsey TA, Chang S et al (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110:479–488

    Article  CAS  PubMed  Google Scholar 

  10. Vega RB, Harrison BC, Meadows E et al (2004) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24:8374–8385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wu X, Zhang T, Bossuyt J et al (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116:675–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bossuyt J, Helmstadter K, Wu X et al (2008) Ca2+/calmodulin-dependent protein kinase IIδ and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure. Circ Res 102:695–702

    Article  CAS  PubMed  Google Scholar 

  13. Ha CH, Kim JY, Zhao J et al (2010) PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 107:15467–15472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chang CW, Lee L, Yu D et al (2013) Acute β-adrenergic activation triggers nuclear import of histone deacetylase 5 and delays Gq-induced transcriptional activation. J Biol Chem 288:192–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Haworth RS, Stathopoulou K, Candasamy AJ et al (2012) Neurohormonal regulation of cardiac histone deacetylase 5 nuclear localization by phosphorylation-dependent and phosphorylation-independent mechanisms. Circ Res 110:1585–1595

    Article  CAS  PubMed  Google Scholar 

  16. Kirsh O, Seeler JS, Pichler A et al (2002) The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J 21:2682–2691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Takao K, Okamoto K, Nakagawa T et al (2005) Visualization of synaptic Ca2+ /calmodulin-dependent protein kinase II activity in living neurons. J Neurosci 25:3107–3112

    Article  CAS  PubMed  Google Scholar 

  18. Erickson JR, Patel R, Ferguson A et al (2011) Fluorescence resonance energy transfer-based sensor Camui provides new insight into mechanisms of calcium/calmodulin-dependent protein kinase II activation in intact cardiomyocytes. Circ Res 109:729–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Erickson JR, Pereira L, Wang L et al (2013) Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502:372–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Song Q, Saucerman JJ, Bossuyt J et al (2008) Differential integration of Ca2+-calmodulin signal in intact ventricular myocytes at low and high affinity Ca2+-calmodulin targets. J Biol Chem 283:31531–31540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Maier LS, Ziolo MT, Bossuyt J et al (2006) Dynamic changes in free Ca-calmodulin levels in adult cardiac myocytes. J Mol Cell Cardiol 41:451–458

    Article  CAS  PubMed  Google Scholar 

  22. Tian Q, Pahlavan S, Oleinikow K et al (2012) Functional and morphological preservation of adult ventricular myocytes in culture by sub-micromolar cytochalasin D supplement. J Mol Cell Cardiol 52:113–124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants P01 HL080101 and R37 HL30077 (DMB) and R01 HL103933 (J.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald M. Bers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bossuyt, J., Bers, D.M. (2015). Assessing GPCR and G Protein Signaling to the Nucleus in Live Cells Using Fluorescent Biosensors. In: Allen, B., Hébert, T. (eds) Nuclear G-Protein Coupled Receptors. Methods in Molecular Biology, vol 1234. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1755-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1755-6_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1754-9

  • Online ISBN: 978-1-4939-1755-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics