Skip to main content

Isolation of Giant Plasma Membrane Vesicles for Evaluation of Plasma Membrane Structure and Protein Partitioning

  • Protocol
  • First Online:
Book cover Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1232))

Abstract

Although investigation into the structure of eukaryotic cell membranes has been an intense focus of cell biology for the past two decades, definitive insights have been limited by the lack of coherent methods for the isolation of specific organelle membranes and the identification of membrane subdomains. Here we describe a method for the isolation of mammalian cell plasma membranes as Giant Plasma Membrane Vesicles (GPMVs) and strategies for imaging membrane lateral structure and quantification of protein partitioning between coexisting domains by fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  PubMed  CAS  Google Scholar 

  2. Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295

    Article  PubMed  CAS  Google Scholar 

  3. McConnell HM, Vrljic M (2003) Liquid-liquid immiscibility in membranes. Annu Rev Biophys Biomol Struct 32:469–492

    Article  PubMed  CAS  Google Scholar 

  4. Kenworthy AK (2008) Have we become overly reliant on lipid rafts? Talking Point on the involvement of lipid rafts in T-cell activation. EMBO Rep 9(6):531–535

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115(4):377–388

    Article  PubMed  CAS  Google Scholar 

  6. Baumgart T et al (2007) Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc Natl Acad Sci U S A 104(9):3165–3170

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Levental I et al (2009) Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochem J 424(2):163–167

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Lingwood D, Ries J, Schwille P, Simons K (2008) Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc Natl Acad Sci U S A 105(29):10005–10010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Ayuyan AG, Cohen FS (2008) Raft composition at physiological temperature and pH in the absence of detergents. Biophys J 94:2654–2666

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Sengupta P, Holowka D, Baird B (2007) Fluorescence resonance energy transfer between lipid probes detects nanoscopic heterogeneity in the plasma membrane of live cells. Biophys J 92(10):3564–3574

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Swamy MJ et al (2006) Coexisting domains in the plasma membranes of live cells characterized by spin-label ESR spectroscopy. Biophys J 90(12):4452

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Eggeling C et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162

    Article  PubMed  CAS  Google Scholar 

  13. Prior IA, Muncke C, Parton RG, Hancock JF (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160(2):165–170

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Klemm RW et al (2009) Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J Cell Biol 185(4):601–612

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Gerl MJ et al (2012) Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J Cell Biol 196(2):213–221

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 7(6):456–462

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Sezgin E et al (2012) Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat Protoc 7(6):1042–1051

    Article  PubMed  CAS  Google Scholar 

  18. Levental I, Grzybek M, Simons K (2011) Raft domains of variable properties and compositions in plasma membrane vesicles. Proc Natl Acad Sci U S A 108(28):11411–11416

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Kaiser HJ et al (2009) Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci U S A 106(39):16645–16650

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Levental I, Lingwood D, Grzybek M, Coskun U, Simons K (2010) Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci U S A 107(51):22050–22054

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Sengupta P, Hammond A, Holowka D, Baird B (2008) Structural determinants for partitioning of lipids and proteins between coexisting fluid phases in giant plasma membrane vesicles. Biochim Biophys Acta 1778(1):20–32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Diaz-Rohrer BB, Levental KR, Simons K, Levental I (2014) Membrane raft association is a determinant of plasma membrane localization. Proc Natl Acad Sci 111(23):8500–8505

    Google Scholar 

  23. Scott RE (1976) Plasma membrane vesiculation: a new technique for isolation of plasma membranes. Science 194(4266):743–745

    Article  PubMed  CAS  Google Scholar 

  24. Zhou Y et al (2013) Bile acids modulate signaling by functional perturbation of plasma membrane domains. J Biol Chem. 288(50):35660–35670

    Google Scholar 

Download references

Acknowledgments

We thank the Cancer Prevention and Research Institute of Texas (R1215) for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Levental .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Levental, K.R., Levental, I. (2015). Isolation of Giant Plasma Membrane Vesicles for Evaluation of Plasma Membrane Structure and Protein Partitioning. In: Owen, D. (eds) Methods in Membrane Lipids. Methods in Molecular Biology, vol 1232. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1752-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1752-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1751-8

  • Online ISBN: 978-1-4939-1752-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics