Skip to main content

Preparation of Detergent-Resistant Membranes (DRMs) from Cultured Mammalian Cells

  • Protocol
  • First Online:
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1232))

Abstract

Detergent-resistant membranes (DRMs) isolated from cells are enriched in proteins and lipids with a high affinity for lipid rafts, or membrane microdomains in the liquid-ordered phase. Enrichment in DRMs provides a good indication that a protein is “raftophilic,” and may be present in rafts in cell membranes before extraction. Here, I describe preparation of Triton X-100-insoluble DRMs from cultured mammalian cells on sucrose gradients. Methods for analyzing the distribution of particular proteins across the gradient, and for recovering DRMs for further use are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown DA (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology 21:430–439

    Article  PubMed  CAS  Google Scholar 

  2. Ahmed SN, Brown DA, London E (1997) On the origin of sphingolipid-cholesterol rich detergent-insoluble domains in cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36:10944–10953

    Article  PubMed  CAS  Google Scholar 

  3. Pathak P, London E (2011) Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Biophys J 101:2417–2425

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Heerklotz H (2002) Triton promotes domain formation in lipid raft mixtures. Biophys J 83:2693–2701

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Lichtenberg D, Goni FM, Heerklotz H (2005) Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem Sci 30:430–436

    Article  PubMed  CAS  Google Scholar 

  6. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  PubMed  CAS  Google Scholar 

  7. Ge M, Field KA, Aneja R et al (1999) ESR characterization of liquid ordered phase of detergent resistant membranes from RBL-2H3 cells. Biophys J 77:925–933

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Waugh MG, Hsuan JJ (2009) Preparation of membrane rafts. Methods Mol Biol 462:403–414

    PubMed  CAS  Google Scholar 

  9. Röper K, Corbeil D, Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid microdomains in the apical plasma membrane. Nat Cell Biol 2:582–592

    Article  PubMed  Google Scholar 

  10. Drevot P, Langlet C, Guo X-J et al (2002) TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J 21:1899–1908

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Zhao J, Wu J, Heberle FA et al (2007) Phase studies of model biomembranes: complex behavior of DSPC/DOPC/cholesterol. Biochim Biophys Acta 1768:2764–2776

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Konyakhina TM, Wu J, Mastroianni JD et al (2013) Phase diagram of a 4-component lipid mixture: DSPC/DOPC/POPC/chol. Biochim Biophys Acta 1828:2204–2214

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388

    Article  PubMed  CAS  Google Scholar 

  14. Skwarek M (2004) Recent controversy surrounding lipid rafts. Arch Immunol Ther Exp (Warsz) 52:427–431

    CAS  Google Scholar 

  15. Shaw AS (2006) Lipid rafts: now you see them, now you don't. Nat Immunol 7:1139–1142

    Article  PubMed  CAS  Google Scholar 

  16. Kraft ML (2013) Plasma membrane organization and function: moving past lipid rafts. Mol Biol Cell 24:2765–2768

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Kusumi A, Suzuki KG, Kasai RS et al (2011) Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci 36:604–615

    Article  PubMed  CAS  Google Scholar 

  18. Sharma P, Varma R, Sarasij RC et al (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589

    Article  PubMed  CAS  Google Scholar 

  19. LaRocca TJ, Crowley JT, Cusack BJ et al (2010) Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. Cell Host Microbe 8:331–342

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Korzeniowski M, Kwiatkowska K, Sobota A (2003) Insights into the association of Fc-gamma-RII and TCR with detergent-resistant membrane domains: isolation of the domains in detergent-free density gradients facilitates membrane fragment reconstitution. Biochemistry 42:5358–5367

    Article  PubMed  CAS  Google Scholar 

  21. Hooper NM, Turner AJ (1988) Ectoenzymes of the kidney microvillar membrane. Differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor. Biochem J 250:865–869

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Fujiki Y, Hubbard AL, Fowler S et al (1982) Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol 93:97–102

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grant GM47897 to DAB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah A. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Brown, D.A. (2015). Preparation of Detergent-Resistant Membranes (DRMs) from Cultured Mammalian Cells. In: Owen, D. (eds) Methods in Membrane Lipids. Methods in Molecular Biology, vol 1232. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1752-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1752-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1751-8

  • Online ISBN: 978-1-4939-1752-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics