Skip to main content

Introduction to Fluorescence Probing of Biological Membranes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1232))

Abstract

Fluorescence is one of the most powerful and commonly used tools in biophysical studies of biomembrane structure and dynamics that can be applied on different levels, from lipid monolayers and bilayers to living cells, tissues, and whole animals. Successful application of this method relies on proper design of fluorescence probes with optimized photophysical properties. These probes are efficient for studying the microscopic analogs of viscosity, polarity, and hydration, as well as the molecular order, environment relaxation, and electrostatic potentials at the sites of their location. Being smaller than the membrane width they can sense the gradients of these parameters across the membrane. We present examples of novel dyes that achieve increased spatial resolution and information content of the probe responses. In this respect, multiparametric environment-sensitive probes feature considerable promise.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Demchenko AP, Mely Y, Duportail G, Klymchenko AS (2009) Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys J 96:3461–3470

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Lentz BR (1989) Membrane fluidity as detected by diphenylhexatriene probes. Chem Phys Lipids 50:171–190

    CAS  Google Scholar 

  3. Duportail G, Lianos P (1996) Probing of vesicles using pyrene and pyrene derivatives. In: Rosoff M (ed) Vesicles. Marcel Dekker, New York, pp 295–372

    Google Scholar 

  4. Gimpl G, Gehrig-Burger K (2007) Cholesterol reporter molecules. Biosci Rep 27:335–358

    PubMed  CAS  Google Scholar 

  5. Ariola FS, Li ZG, Cornejo C, Bittman R, Heikal AA (2009) Membrane fluidity and lipid order in ternary giant unilamellar vesicles using a new bodipy-cholesterol derivative. Biophys J 96:2696–2708

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Chattopadhyay A (1990) Chemistry and biology of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: fluorescent probes of biological and model membranes. Chem Phys Lipids 53:1–15

    PubMed  CAS  Google Scholar 

  7. Chattopadhyay A, Mukherjee S, Raghuraman H (2002) Reverse micellar organization and dynamics: a wavelength-selective fluorescence approach. J Phys Chem B 106:13002–13009

    CAS  Google Scholar 

  8. Rawat SS, Chattopadhyay A (1999) Structural transition in the micellar assembly: a fluorescence study. J Fluoresc 9:233–244

    CAS  Google Scholar 

  9. Lin S, Struve WS (1991) Time-resolved fluorescence of nitrobenzoxadiazole aminohexanoic acid—effect of intermolecular hydrogen-bonding on nonradiative decay. Photochem Photobiol 54:361–365

    PubMed  CAS  Google Scholar 

  10. Sparrow CP, Patel S, Baffic J, Chao YS, Hernandez M, Lam MH, Montenegro J, Wright SD, Detmers PA (1999) A fluorescent cholesterol analog traces cholesterol absorption in hamsters and is esterified in vivo and in vitro. J Lipid Res 40:1747–1757

    PubMed  CAS  Google Scholar 

  11. Pagano RE, Sleight RG (1985) Defining lipid transport pathways in animal cells. Science 229:1051–1057

    PubMed  CAS  Google Scholar 

  12. Koval M, Pagano RE (1990) Sorting of an internalized plasma membrane lipid between recycling and degradative pathways in normal and Niemann-Pick, type A fibroblasts. J Cell Biol 111:429–442

    PubMed  CAS  Google Scholar 

  13. Martin OC, Pagano RE (1987) Transbilayer movement of fluorescent analogs of phosphatidylserine and phosphatidylethanolamine at the plasma-membrane of cultured-cells—evidence for a protein-mediated and Atp-dependent process(Es). J Biol Chem 262:5890–5898

    PubMed  CAS  Google Scholar 

  14. Elvington SM, Nichols JW (2007) Spontaneous, intervesicular transfer rates of fluorescent, acyl chain-labeled phosphatidylcholine analogs. Biochim Biophys Acta 1768:502–508

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Bai JN, Pagano RE (1997) Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry 36:8840–8848

    PubMed  CAS  Google Scholar 

  16. Chattopadhyay A, London E (1987) Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26:39–45

    PubMed  CAS  Google Scholar 

  17. Abrams FS, London E (1993) Extension of the parallax analysis of membrane penetration depth to the polar-region of model membranes—use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry 32:10826–10831

    PubMed  CAS  Google Scholar 

  18. te Vruchte D, Lloyd-Evans E, Veldman RJ, Neville DCA, Dwek RA, Platt FM, van Blitterswijk WJ, Sillence DJ (2004) Accumulation of glycosphingolipids in Niemann-Pick C disease disrupts endosomal transport. J Biol Chem 279:26167–26175

    Google Scholar 

  19. Pagano RE, Martin OC, Kang HC, Haugland RP (1991) A novel fluorescent ceramide analog for studying membrane traffic in animal-cells—accumulation at the Golgi-apparatus results in altered spectral properties of the sphingolipid precursor. J Cell Biol 113:1267–1279

    PubMed  CAS  Google Scholar 

  20. Martin OC, Pagano RE (1994) Internalization and sorting of a fluorescent analog of glucosylceramide to the Golgi-apparatus of human skin fibroblasts—utilization of endocytic and nonendocytic transport mechanisms. J Cell Biol 125:769–781

    PubMed  CAS  Google Scholar 

  21. Golebiewska U, Nyako M, Woturski W, Zaitseva I, McLaughlin S (2008) Diffusion coefficient of fluorescent phosphatidylinositol 4,5-bisphosphate in the plasma membrane of cells. Mol Biol Cell 19:1663–1669

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Boldyrev IA, Zhai X, Momsen MM, Brockman HL, Brown RE, Molotkovsky JG (2007) New BODIPY lipid probes for fluorescence studies of membranes. J Lipid Res 48:1518–1532

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Sachl R, Boldyrev I, Johansson LBA (2010) Localisation of BODIPY-labelled phosphatidylcholines in lipid bilayers. Phys Chem Chem Phys 12:6027–6034

    PubMed  CAS  Google Scholar 

  24. Kaiser RD, London E (1998) Determination of the depth of BODIPY probes in model membranes by parallax analysis of fluorescence quenching. Biochim Biophys Acta 1375:13–22

    PubMed  CAS  Google Scholar 

  25. Menger FM, Keiper JS, Caran KL (2002) Depth-profiling with giant vesicle membranes. J Am Chem Soc 124:11842–11843

    PubMed  CAS  Google Scholar 

  26. Armendariz KP, Huckabay HA, Livanec PW, Dunn RC (2012) Single molecule probes of membrane structure: orientation of BODIPY probes in DPPC as a function of probe structure. Analyst 137:1402–1408

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Kay JG, Koivusalo M, Ma XX, Wohland T, Grinstein S (2012) Phosphatidylserine dynamics in cellular membranes. Mol Biol Cell 23:2198–2212

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E (1991) Quantitation of lipid phases in phospholipid-vesicles by the generalized polarization of laurdan fluorescence. Biophys J 60:179–189

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Jurkiewicz P, Olzynska A, Langner M, Hof M (2006) Headgroup hydration and mobility of DOTAP/DOPC bilayers: a fluorescence solvent relaxation study. Langmuir 22:8741–8749

    PubMed  CAS  Google Scholar 

  30. Lakowicz JR, Bevan DR, Maliwal BP, Cherek H, Balter A (1983) Synthesis and characterization of a fluorescence probe of the phase-transition and dynamic properties of membranes. Biochemistry 22:5714–5722

    CAS  Google Scholar 

  31. Olzynska A, Zan A, Jurkiewicz P, Sykora J, Grobner G, Langner M, Hof M (2007) Molecular interpretation of fluorescence solvent relaxation of Patman and H-2 NMR experiments in phosphatidylcholine bilayers. Chem Phys Lipids 147:69–77

    PubMed  CAS  Google Scholar 

  32. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    PubMed  CAS  Google Scholar 

  33. Williams RM, Webb WW (2000) Single granule pH cycling in antigen-induced mast cell secretion. J Cell Sci 113(Pt 21):3839–3850

    PubMed  CAS  Google Scholar 

  34. Gibbons E, Pickett KR, Streeter MC, Warcup AO, Nelson J, Judd AM, Bell JD (2013) Molecular details of membrane fluidity changes during apoptosis and relationship to phospholipase A(2) activity. Biochim Biophys Acta 1828:887–895

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Gaus K, Gratton E, Kable EPW, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci U S A 100:15554–15559

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Bagatolli LA, Gratton E (1999) Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys J 77:2090–2101

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Kim HM, Choo HJ, Jung SY, Ko YG, Park WH, Jeon SJ, Kim CH, Joo TH, Cho BR (2007) A two-photon fluorescent probe for lipid raft imaging: C-laurdan. Chembiochem 8:553–559

    PubMed  CAS  Google Scholar 

  38. Barucha-Kraszewska J, Kraszewski S, Ramseyer C (2013) Will C-Laurdan Dethrone Laurdan in fluorescent solvent relaxation techniques for lipid membrane studies? Langmuir 29:1174–1182

    PubMed  CAS  Google Scholar 

  39. Klemm RW, Ejsing CS, Surma MA, Kaiser HJ, Gerl MJ, Sampaio JL, de Robillard Q, Ferguson C, Proszynski TJ, Shevchenko A, Simons K (2009) Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J Cell Biol 185:601–612

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Kuhry JG, Fonteneau P, Duportail G, Maechling C, Laustriat G (1983) Tma-Dph—a suitable fluorescence polarization probe for specific plasma-membrane fluidity studies in intact living cells. Cell Biophys 5:129–140

    PubMed  CAS  Google Scholar 

  41. Kraayenhof R, Sterk GJ, Sang HWWF (1993) Probing biomembrane interfacial potential and ph profiles with a new-type of float-like fluorophores positioned at varying distance from the membrane-surface. Biochemistry 32:10057–10066

    PubMed  CAS  Google Scholar 

  42. Clarke RJ, Zouni A, Holzwarth JF (1995) Voltage sensitivity of the fluorescent-probe Rh421 in a model membrane system. Biophys J 68:1406–1415

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Gross E, Bedlack RS, Loew LM (1994) Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J 67:208–216

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Sengupta PK, Kasha M (1979) Excited-state proton-transfer spectroscopy of 3-hydroxyflavone and quercetin. Chem Phys Lett 68:382–385

    CAS  Google Scholar 

  45. Mcmorrow D, Kasha M (1984) Intramolecular excited-state proton-transfer in 3-hydroxy-flavone—hydrogen-bonding solvent perturbations. J Phys Chem 88:2235–2243

    CAS  Google Scholar 

  46. Klymchenko AS, Demchenko AP (2003) Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys Chem Chem Phys 5:461–468

    CAS  Google Scholar 

  47. Klymchenko AS, Demchenko AP (2002) Electrochromic modulation of excited-state intramolecular proton transfer: the new principle in design of fluorescence sensors. J Am Chem Soc 124:12372–12379

    PubMed  CAS  Google Scholar 

  48. Klymchenko AS, Duportail G, Ozturk T, Pivovarenko VG, Mely Y, Demchenko AP (2002) Novel two-band ratiometric fluorescence probes with different location and orientation in phospholipid membranes. Chem Biol 9:1199–1208

    PubMed  CAS  Google Scholar 

  49. Krishna MMG (1999) Excited-state kinetics of the hydrophobic probe nile red in membranes and micelles. J Phys Chem A 103:3589–3595

    CAS  Google Scholar 

  50. Sykora J, Jurkiewicz P, Epand RM, Kraayenhof R, Langner M, Hof M (2005) Influence of the curvature on the water structure in the headgroup region of phospholipid bilayer studied by the solvent relaxation technique. Chem Phys Lipids 135:213–221

    PubMed  CAS  Google Scholar 

  51. Chong PLG (1988) Effects of hydrostatic-pressure on the location of Prodan in lipid bilayers and cellular membranes. Biochemistry 27:399–404

    PubMed  CAS  Google Scholar 

  52. Klymchenko AS, Duportail G, Demchenko AP, Mely Y (2004) Bimodal distribution and fluorescence response of environment-sensitive probes in lipid bilayers. Biophys J 86:2929–2941

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Klymchenko AS, Duportail G, Mely Y, Demchenko AP (2003) Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes. Proc Natl Acad Sci U S A 100:11219–11224

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Bagatolli LA (2006) To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta 1758:1541–1556

    PubMed  CAS  Google Scholar 

  55. Bondar OP, Rowe ES (1999) Preferential interactions of fluorescent probe Prodan with cholesterol. Biophys J 76:956–962

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Parisio G, Marini A, Biancardi A, Ferrarini A, Mennucci B (2011) Polarity-sensitive fluorescent probes in lipid bilayers: bridging spectroscopic behavior and microenvironment properties. J Phys Chem B 115:9980–9989

    PubMed  CAS  Google Scholar 

  57. Nitschke WK, Vequi-Suplicy CC, Coutinho K, Stassen H (2012) Molecular dynamics investigations of PRODAN in a DLPC bilayer. J Phys Chem B 116:2713–2721

    PubMed  CAS  Google Scholar 

  58. Alakoskela JMI, Kinnunen PKJ (2001) Probing phospholipid main phase transition by fluorescence spectroscopy and a surface redox reaction. J Phys Chem B 105:11294–11301

    CAS  Google Scholar 

  59. Demchenko AP, Shcherbatska NV (1985) Nanosecond dynamics of charged fluorescent-probes at the polar interface of a membrane phospholipid-bilayer. Biophys Chem 22:131–143

    PubMed  CAS  Google Scholar 

  60. Loura LM, Ramalho JP (2007) Location and dynamics of acyl chain NBD-labeled phosphatidylcholine (NBD-PC) in DPPC bilayers. A molecular dynamics and time-resolved fluorescence anisotropy study. Biochim Biophys 1768:467–478

    CAS  Google Scholar 

  61. Huster D, Muller P, Arnold K, Herrmann A (2001) Dynamics of membrane penetration of the fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group attached to an acyl chain of phosphatidylcholine. Biophys J 80:822–831

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Bouvrais H, Pott T, Bagatolli LA, Ipsen JH, Meleard P (2010) Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers. Biochim Biophys Acta 1798:1333–1337

    PubMed  CAS  Google Scholar 

  63. Cruz A, Vazquez L, Velez M, Perez-Gil J (2005) Influence of a fluorescent probe on the nanostructure of phospholipid membranes: dipalmitoylphosphatidylcholine interfacial monolayers. Langmuir 21:5349–5355

    PubMed  CAS  Google Scholar 

  64. Epand RM, Kraayenhof R (1999) Fluorescent probes used to monitor membrane interfacial polarity. Chem Phys Lipids 101:57–64

    PubMed  CAS  Google Scholar 

  65. Disalvo EA, Lairion F, Martini F, Tymczyszyn E, Frias M, Almaleck H, Gordillo GJ (2008) Structural and functional properties of hydration and confined water in membrane interfaces. Biochim Biophys Acta 1778:2655–2670

    PubMed  CAS  Google Scholar 

  66. Gawrisch K, Ruston D, Zimmerberg J, Parsegian VA, Rand RP, Fuller N (1992) Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J 61:1213–1223

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Parasassi T, Di Stefano M, Loiero M, Ravagnan G, Gratton E (1994) Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe. Biophys J 66:763–768

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Ho C, Slater SJ, Stubbs CD (1995) Hydration and order in lipid bilayers. Biochemistry 34:6188–6195

    PubMed  CAS  Google Scholar 

  69. Sykora J, Kapusta P, Fidler V, Hof M (2002) On what time scale does solvent relaxation in phospholipid bilayers happen? Langmuir 18:571–574

    CAS  Google Scholar 

  70. Demchenko AP (2002) The red-edge effects: 30 years of exploration. Luminescence 17:19–42

    PubMed  CAS  Google Scholar 

  71. Chattopadhyay A, Mukherjee S (1999) Depth-dependent solvent relaxation in membranes: wavelength-selective fluorescence as a membrane dipstick. Langmuir 15:2142–2148

    CAS  Google Scholar 

  72. Sykora J, Slavicek P, Jungwirth P, Barucha J, Hof M (2007) Time-dependent stokes shifts of fluorescent dyes in the hydrophobic backbone region of a phospholipid bilayer: combination of fluorescence spectroscopy and ab initio calculations. J Phys Chem B 111:5869–5877

    PubMed  CAS  Google Scholar 

  73. Klymchenko AS, Mely Y, Demchenko AP, Duportail G (2004) Simultaneous probing of hydration and polarity of lipid bilayers with 3-hydroxyflavone fluorescent dyes. Biochim Biophys Acta 1665:6–19

    PubMed  CAS  Google Scholar 

  74. Zhang YL, Frangos JA, Chachisvilis M (2006) Laurdan fluorescence senses mechanical strain in the lipid bilayer membrane. Biochem Biophys Res Commun 347:838–841

    PubMed  CAS  Google Scholar 

  75. Nicolini C, Celli A, Gratton E, Winter R (2006) Pressure tuning of the morphology of heterogeneous lipid vesicles: a two-photon-excitation fluorescence microscopy study. Biophys J 91:2936–2942

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Schuler I, Milon A, Nakatani Y, Ourisson G, Albrecht AM, Benveniste P, Hartman MA (1991) Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers. Proc Natl Acad Sci U S A 88:6926–6930

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    PubMed  CAS  Google Scholar 

  78. Beck A, Heissler D, Duportail G (1993) Influence of the length of the spacer on the partitioning properties of amphiphilic fluorescent membrane probes. Chem Phys Lipids 66:135–142

    PubMed  CAS  Google Scholar 

  79. Bagatolli LA, Gratton E (2000) Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J 78:290–305

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Scherfeld D, Kahya N, Schwille P (2003) Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol. Biophys J 85:3758–3768

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    PubMed  CAS  Google Scholar 

  83. Owen DM, Rentero C, Magenau A, Abu-Siniyeh A, Gaus K (2012) Quantitative imaging of membrane lipid order in cells and organisms. Nat Protoc 7:24–35

    CAS  Google Scholar 

  84. Jin L, Millard AC, Wuskell JP, Dong X, Wu D, Clark HA, Loew LM (2006) Characterization and application of a new optical probe for membrane lipid domains. Biophys J 90:2563–2575

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Jin L, Millard AC, Wuskell JP, Clark HA, Loew LM (2005) Cholesterol-enriched lipid domains can be visualized by di-4-ANEPPDHQ with linear and nonlinear optics. Biophys J 89:L4–L6

    Google Scholar 

  86. Kim HM, Jeong BH, Hyon JY, An MJ, Seo MS, Hong JH, Lee KJ, Kim CH, Joo TH, Hong SC, Cho BR (2008) Two-photon fluorescent turn-on probe for lipid rafts in live cell and tissue. J Am Chem Soc 130(2008):4246–4247

    PubMed  CAS  Google Scholar 

  87. Golfetto O, Hinde E, Gratton E (2013) Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys J 104:1238–1247

    PubMed  CAS  PubMed Central  Google Scholar 

  88. M’Baye G, Mely Y, Duportail G, Klymchenko AS (2008) Liquid ordered and gel phases of lipid bilayers: fluorescent probes reveal close fluidity but different hydration. Biophys J 95:1217–1225

    PubMed  PubMed Central  Google Scholar 

  89. Haluska CK, Schroder AP, Didier P, Heissler D, Duportail G, Mely Y, Marques CM (2008) Combining fluorescence lifetime and polarization microscopy to discriminate phase separated domains in giant unilamellar vesicles. Biophys J 95:5737–5747

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Korlach J, Schwille P, Webb WW, Feigenson GW (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 96:8461–8466

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Oncul S, Klymchenko AS, Kucherak OA, Demchenko AP, Martin S, Dontenwill M, Arntz Y, Didier P, Duportail G, Mely Y (2010) Liquid ordered phase in cell membranes evidenced by a hydration-sensitive probe: effects of cholesterol depletion and apoptosis. Biochim Biophys Acta 1798:1436–1443

    PubMed  CAS  Google Scholar 

  92. Klymchenko AS, Oncul S, Didier P, Schaub E, Bagatolli L, Duportail G, Mely Y (2009) Visualization of lipid domains in giant unilamellar vesicles using an environment-sensitive membrane probe based on 3-hydroxyflavone. Biochim Biophys Acta 1788:495–499

    PubMed  CAS  Google Scholar 

  93. Darwich Z, Kucherak QA, Kreder R, Richert L, Vauchelles R, Yves M, Klymchenko AS (2013) Rational design of fluorescence membrane probes for apoptosis based on 3-hydroxyflavone. Methods Appl Fluoresc 1:025002

    CAS  Google Scholar 

  94. Zwaal RFA, Schroit AJ (1997) Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89:1121–1132

    PubMed  CAS  Google Scholar 

  95. Shynkar VV, Klymchenko AS, Kunzelmann C, Duportail G, Muller CD, Demchenko AP, Freyssinet JM, Mely Y (2007) Fluorescent biomembrane probe for ratiometric detection of apoptosis. J Am Chem Soc 129:2187–2193

    PubMed  CAS  Google Scholar 

  96. Kucherak OA, Oncul S, Darwich Z, Yushchenko DA, Arntz Y, Didier P, Mely Y, Klymchenko AS (2010) Switchable nile red-based probe for cholesterol and lipid order at the outer leaflet of biomembranes. J Am Chem Soc 132:4907–4916

    PubMed  CAS  Google Scholar 

  97. Darwich Z, Klymchenko AS, Kucherak OA, Richert L, Mely Y (2012) Detection of apoptosis through the lipid order of the outer plasma membrane leaflet. Biochim Biophys Acta 1818:3048–3054

    PubMed  CAS  Google Scholar 

  98. O'Shea P (2003) Intermolecular interactions with/within cell membranes and the trinity of membrane potentials: kinetics and imaging. Biochem Soc Trans 31:990–996

    PubMed  Google Scholar 

  99. Zouni A, Clarke RJ, Holzwarth JF (1994) Kinetics of the solubilization of styryl dye aggregates by lipid vesicles. J Phys Chem 98:1732–1738

    CAS  Google Scholar 

  100. Wuskell JP, Boudreau D, Wei MD, Jin L, Engl R, Chebolu R, Bullen A, Hoffacker KD, Kerimo J, Cohen LB, Zochowski MR, Loew LM (2006) Synthesis, spectra, delivery and potentiometric responses of new styryl dyes with extended spectral ranges. J Neurosci Methods 151:200–215

    PubMed  Google Scholar 

  101. Vitha MF, Clarke RJ (2007) Comparison of excitation and emission ratiometric fluorescence methods for quantifying the membrane dipole potential. Biochim Biophys Acta 1768:107–114

    PubMed  CAS  Google Scholar 

  102. Millard AC, Jin L, Wei MD, Wuskell JP, Lewis A, Loew LM (2004) Sensitivity of second harmonic generation from styryl dyes to transmembrane potential. Biophys J 86:1169–1176

    PubMed  CAS  PubMed Central  Google Scholar 

  103. M'Baye G, Shynkar VV, Klymchenko AS, Mely Y, Duportail G (2006) Membrane dipole potential as measured by ratiometric 3-hydroxyflavone fluorescence probes: accounting for hydration effects. J Fluoresc 16:35–42

    PubMed  Google Scholar 

  104. Shynkar VV, Klymchenko AS, Duportail G, Demchenko AP, Mely Y (2005) Two-color fluorescent probes for imaging the dipole potential of cell plasma membranes. Biochim Biophys Acta 1712:128–136

    PubMed  CAS  Google Scholar 

  105. Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5:874–885

    PubMed  CAS  Google Scholar 

  106. Kuznetsov A, Bindokas VP, Marks JD, Philipson LH (2005) FRET-based voltage probes for confocal imaging: membrane potential oscillations throughout pancreatic islets. Am J Physiol Cell Physiol 289:C224–C229

    PubMed  CAS  Google Scholar 

  107. Cacciatore TW, Brodfuehrer PD, Gonzalez JE, Jiang T, Adams SR, Tsien RY, Kristan WB, Kleinfeld D (1999) Identification of neural circuits by imaging coherent electrical activity with FRET-based dyes. Neuron 23:449–459

    PubMed  CAS  Google Scholar 

  108. Briggman KL, Abarbanel HDI, Kristan WB (2005) Optical imaging of neuronal populations during decision-making. Science 307:896–901

    PubMed  CAS  Google Scholar 

  109. Montana V, Farkas DL, Loew LM (1989) Dual-wavelength ratiometric fluorescence measurements of membrane-potential. Biochemistry 28:4536–4539

    PubMed  CAS  Google Scholar 

  110. Gross D, Loew LM (1989) Fluorescent indicators of membrane-potential—microspectrofluorometry and imaging. Method Cell Biol 30:193–218

    CAS  Google Scholar 

  111. Kuhn B, Fromherz P, Denk W (2004) New voltage-sensitive dye shows large fractional fluorescence changes with spectral-edge one- or 2-photon excitation. Biophys J 86:333–334

    Google Scholar 

  112. Kuhn B, Fromherz P (2003) Anellated hemicyanine dyes in a neuron membrane: molecular Stark effect and optical voltage recording. J Phys Chem B 107:7903–7913

    CAS  Google Scholar 

  113. Hubener G, Lambacher A, Fromherz P (2003) Anellated hemicyanine dyes with large symmetrical solvatochromism of absorption and fluorescence. J Phys Chem B 107:7896–7902

    Google Scholar 

  114. Fromherz P, Hubener G, Kuhn B, Hinner MJ (2008) ANNINE-6plus, a voltage-sensitive dye with good solubility, strong membrane binding and high sensitivity. Eur Biophy J EBJ 37:509–514

    CAS  Google Scholar 

  115. Klymchenko AS, Stoeckel H, Takeda K, Mely Y (2006) Fluorescent probe based on intramolecular proton transfer for fast ratiometric measurement of cellular transmembrane potential. J Phys Chem B 110:13624–13632

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Demchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Demchenko, A.P., Duportail, G., Oncul, S., Klymchenko, A.S., Mély, Y. (2015). Introduction to Fluorescence Probing of Biological Membranes. In: Owen, D. (eds) Methods in Membrane Lipids. Methods in Molecular Biology, vol 1232. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1752-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1752-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1751-8

  • Online ISBN: 978-1-4939-1752-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics