Skip to main content

Introduction: Membrane Properties (Good) for Life

  • Protocol
  • First Online:
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1232))

Abstract

Membranes protect cells from the surrounding environment but also provide a means for the optimization of processes such as metabolism, signalling, or mitogenesis. Membrane structure and function is determined by its molecular composition. How lipid species define membrane properties is discussed in this introductory chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldfine H (1984) Bacterial membranes and lipid packing theory. J Lipid Res 25:1501–1507

    PubMed  CAS  Google Scholar 

  2. Cronan JE (2003) Bacterial membrane lipids: where do we stand? Annu Rev Microbiol 57:203–224

    Article  PubMed  CAS  Google Scholar 

  3. Malinsky J, Opekarova M, Grossmann G, Tanner W (2013) Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. Annu Rev Plant Biol 64:501–529

    Article  PubMed  CAS  Google Scholar 

  4. Montes LR, Alonso A, Goni FM, Bagatolli LA (2007) Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys J 93:3548–3554

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, Simons K, Shevchenko A (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106:2136–2141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S (2008) Membrane phosphatidylserine regulates surface charge and protein localization. Science 319:210–213

    Article  PubMed  CAS  Google Scholar 

  7. Yeung T, Terebiznik M, Yu L, Silvius J, Abidi WM, Philips M, Levine T, Kapus A, Grinstein S (2006) Receptor activation alters inner surface potential during phagocytosis. Science 313:347–351

    Article  PubMed  CAS  Google Scholar 

  8. Lomasney JW, Cheng HF, Wang LP, Kuan Y, Liu S, Fesik SW, King K (1996) Phosphatidylinositol 4,5-bisphosphate binding to the pleckstrin homology domain of phospholipase C-delta1 enhances enzyme activity. J Biol Chem 271:25316–25326

    Article  PubMed  CAS  Google Scholar 

  9. Klarlund JK, Rameh LE, Cantley LC, Buxton JM, Holik JJ, Sakelis C, Patki V, Corvera S, Czech MP (1998) Regulation of GRP1-catalyzed ADP ribosylation factor guanine nucleotide exchange by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:1859–1862

    Article  PubMed  CAS  Google Scholar 

  10. Kay JG, Grinstein S (2011) Sensing phosphatidylserine in cellular membranes. Sensors (Basel) 11:1744–1755

    Article  CAS  Google Scholar 

  11. Nahorski SR, Young KW, John Challiss RA, Nash MS (2003) Visualizing phosphoinositide signalling in single neurons gets a green light. Trends Neurosci 26:444–452

    Article  PubMed  CAS  Google Scholar 

  12. Laketa V, Zarbakhsh S, Morbier E, Subramanian D, Dinkel C, Brumbaugh J, Zimmermann P, Pepperkok R, Schultz C (2009) Membrane-permeant phosphoinositide derivatives as modulators of growth factor signaling and neurite outgrowth. Chem Biol 16:1190–1196

    Article  PubMed  CAS  Google Scholar 

  13. Neef AB, Schultz C (2009) Selective fluorescence labeling of lipids in living cells. Angew Chem Int Ed Engl 48:1498–1500

    Article  PubMed  CAS  Google Scholar 

  14. Schultz C (2010) Challenges in studying phospholipid signaling. Nat Chem Biol 6:473–475

    Article  PubMed  CAS  Google Scholar 

  15. Spector AA, Yorek MA (1985) Membrane lipid composition and cellular function. J Lipid Res 26:1015–1035

    PubMed  CAS  Google Scholar 

  16. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  PubMed Central  Google Scholar 

  17. van Meer G, de Kroon AI (2011) Lipid map of the mammalian cell. J Cell Sci 124:5–8

    Article  PubMed  Google Scholar 

  18. Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci U S A 100:15554–15559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Owen DM, Oddos S, Kumar S, Davis DM, Neil MA, French PM, Dustin ML, Magee AI, Cebecauer M (2010) High plasma membrane lipid order imaged at the immunological synapse periphery in live T cells. Mol Membr Biol 27(4–6):178–189

    Article  PubMed  CAS  Google Scholar 

  20. Surma MA, Klose C, Simons K (2012) Lipid-dependent protein sorting at the trans-Golgi network. Biochim Biophys Acta 1821:1059–1067

    Article  PubMed  CAS  Google Scholar 

  21. Gould GW, Lippincott-Schwartz J (2009) New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat Rev Mol Cell Biol 10:287–292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Cebecauer M, Spitaler M, Serge A, Magee AI (2010) Signalling complexes and clusters: functional advantages and methodological hurdles. J Cell Sci 123:309–320

    Article  PubMed  CAS  Google Scholar 

  23. Renner M, Specht CG, Triller A (2008) Molecular dynamics of postsynaptic receptors and scaffold proteins. Curr Opin Neurobiol 18:532–540

    Article  PubMed  CAS  Google Scholar 

  24. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML (2006) T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25:117–127

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Greenfield D, McEvoy AL, Shroff H, Crooks GE, Wingreen NS, Betzig E, Liphardt J (2009) Self-organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol 7:e1000137

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mukherjee S, Zha X, Tabas I, Maxfield FR (1998) Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J 75:1915–1925

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111:6423–6451

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Olsen BN, Schlesinger PH, Ory DS, Baker NA (2012) Side-chain oxysterols: from cells to membranes to molecules. Biochim Biophys Acta 1818:330–336

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Maxfield FR, van Meer G (2010) Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol 22:422–429

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Wang XQ, Sun P, Paller AS (2002) Ganglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor. J Biol Chem 277:47028–47034

    Article  PubMed  CAS  Google Scholar 

  31. Degroote S, Wolthoorn J, van Meer G (2004) The cell biology of glycosphingolipids. Semin Cell Dev Biol 15:375–387

    Article  PubMed  CAS  Google Scholar 

  32. Zha X, Pierini LM, Leopold PL, Skiba PJ, Tabas I, Maxfield FR (1998) Sphingomyelinase treatment induces ATP-independent endocytosis. J Cell Biol 140:39–47

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Bijl N, van Roomen CP, Triantis V, Sokolovic M, Ottenhoff R, Scheij S, van Eijk M, Boot RG, Aerts JM, Groen AK (2009) Reduction of glycosphingolipid biosynthesis stimulates biliary lipid secretion in mice. Hepatology 49:637–645

    Article  PubMed  CAS  Google Scholar 

  34. Mahammad S, Parmryd I (2008) Cholesterol homeostasis in T cells. Methyl-beta-cyclodextrin treatment results in equal loss of cholesterol from Triton X-100 soluble and insoluble fractions. Biochim Biophys Acta 1778:1251–1258

    Article  PubMed  CAS  Google Scholar 

  35. Sharpe HJ, Stevens TJ, Munro S (2010) A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142:158–169

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Bulbarelli A, Sprocati T, Barberi M, Pedrazzini E, Borgese N (2002) Trafficking of tail-anchored proteins: transport from the endoplasmic reticulum to the plasma membrane and sorting between surface domains in polarised epithelial cells. J Cell Sci 115:1689–1702

    PubMed  CAS  Google Scholar 

  37. Haberkant P, Schmitt O, Contreras FX, Thiele C, Hanada K, Sprong H, Reinhard C, Wieland FT, Brugger B (2008) Protein-sphingolipid interactions within cellular membranes. J Lipid Res 49:251–262

    Article  PubMed  CAS  Google Scholar 

  38. Contreras FX, Ernst AM, Haberkant P, Bjorkholm P, Lindahl E, Gonen B, Tischer C, Elofsson A, von Heijne G, Thiele C et al (2012) Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature 481:525–529

    Article  PubMed  CAS  Google Scholar 

  39. Hennecke S, Cosson P (1993) Role of transmembrane domains in assembly and intracellular transport of the CD8 molecule. J Biol Chem 268:26607–26612

    PubMed  CAS  Google Scholar 

  40. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162

    Article  PubMed  CAS  Google Scholar 

  41. Ritchie K, Shan XY, Kondo J, Iwasawa K, Fujiwara T, Kusumi A (2005) Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys J 88:2266–2277

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Lasserre R, Guo XJ, Conchonaud F, Hamon Y, Hawchar O, Bernard AM, Soudja SM, Lenne PF, Rigneault H, Olive D et al (2008) Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat Chem Biol 4:538–547

    Article  PubMed  CAS  Google Scholar 

  43. Ritchie K, Iino R, Fujiwara T, Murase K, Kusumi A (2003) The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques. Mol Membr Biol 20:13–18

    Article  PubMed  CAS  Google Scholar 

  44. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157:1071–1081

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Murase K, Fujiwara T, Umemura Y, Suzuki K, Iino R, Yamashita H, Saito M, Murakoshi H, Ritchie K, Kusumi A (2004) Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys J 86:4075–4093

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Alsteens D, Garcia MC, Lipke PN, Dufrene YF (2010) Force-induced formation and propagation of adhesion nanodomains in living fungal cells. Proc Natl Acad Sci U S A 107:20744–20749

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Natkanski E, Lee WY, Mistry B, Casal A, Molloy JE, Tolar P (2013) B cells use mechanical energy to discriminate antigen affinities. Science 340:1587–1590

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ (1997) Scanning ion conductance microscopy of living cells. Biophys J 73:653–658

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Rheinlaender J, Geisse NA, Proksch R, Schaffer TE (2011) Comparison of scanning ion conductance microscopy with atomic force microscopy for cell imaging. Langmuir 27:697–704

    Article  PubMed  CAS  Google Scholar 

  50. Benninger RK, Onfelt B, Neil MA, Davis DM, French PM (2005) Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes. Biophys J 88:609–622

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Lazar J, Bondar A, Timr S, Firestein SJ (2011) Two-photon polarization microscopy reveals protein structure and function. Nat Methods 8:684–690

    Article  PubMed  CAS  Google Scholar 

  52. Parmryd I, Onfelt B (2013) Consequences of membrane topography. FEBS J 280:2775–2784

    Article  PubMed  CAS  Google Scholar 

  53. Adler J, Shevchuk AI, Novak P, Korchev YE, Parmryd I (2010) Plasma membrane topography and interpretation of single-particle tracks. Nat Methods 7:170–171

    Article  PubMed  CAS  Google Scholar 

  54. Drin G, Casella JF, Gautier R, Boehmer T, Schwartz TU, Antonny B (2007) A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol 14:138–146

    Article  PubMed  CAS  Google Scholar 

  55. Tian A, Baumgart T (2009) Sorting of lipids and proteins in membrane curvature gradients. Biophys J 96:2676–2688

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Ogunyankin MO, Huber DL, Sasaki DY, Longo ML (2013) Nanoscale patterning of membrane-bound proteins formed through curvature-induced partitioning of phase-specific receptor lipids. Langmuir 29:6109–6115

    Article  PubMed  CAS  Google Scholar 

  57. Holthuis JC, Levine TP (2005) Lipid traffic: floppy drives and a superhighway. Nat Rev Mol Cell Biol 6:209–220

    Article  PubMed  CAS  Google Scholar 

  58. Veatch SL, Keller SL (2005) Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys Rev Lett 94:148101

    Article  PubMed  Google Scholar 

  59. Veatch SL, Keller SL (2005) Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta 1746:172–185

    Article  PubMed  CAS  Google Scholar 

  60. Konyakhina TM, Wu J, Mastroianni JD, Heberle FA, Feigenson GW (2013) Phase diagram of a 4-component lipid mixture: DSPC/DOPC/POPC/chol. Biochim Biophys Acta 1828:2204–2214

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Parasassi T, Gratton E, Yu WM, Wilson P, Levi M (1997) Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J 72:2413–2429

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Kim HM, Choo HJ, Jung SY, Ko YG, Park WH, Jeon SJ, Kim CH, Joo TH, Cho BR (2007) A two-photon fluorescent probe for lipid raft imaging: C-laurdan. Chembiochem 8:553–559

    Article  PubMed  CAS  Google Scholar 

  63. Bagatolli LA, Gratton E (2000) Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J 78:290–305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Sezgin E, Levental I, Grzybek M, Schwarzmann G, Mueller V, Honigmann A, Belov VN, Eggeling C, Coskun U, Simons K et al (2012) Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim Biophys Acta 1818:1777–1784

    Article  PubMed  CAS  Google Scholar 

  65. Dinic J, Ashrafzadeh P, Parmryd I (2013) Actin filaments attachment at the plasma membrane in live cells cause the formation of ordered lipid domains. Biochim Biophys Acta 1828:1102–1111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

My work is supported by Czech Science Foundation (P305/11/0459). The author would also like to acknowledge Purkyne Fellowship from The Academy of Sciences of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Cebecauer .

Editor information

Editors and Affiliations

Appendix: Lipid Phases and Acyl Chain Ordering in Model Membranes

Appendix: Lipid Phases and Acyl Chain Ordering in Model Membranes

Physical properties of membranes are important factors for cell function but due to current technical limitations cannot be studied in living cells with high precision or, in some cases, not at all. Model membranes with well-defined composition (e.g., giant unilamellar vesicles; GUVs) provide an excellent subject for biophysical studies and enable characterization of physical properties with good accuracy and reproducibility. In model membranes, lipids can form at least three phases which differ in freedom with which lipids can move around: the most rigid—solid (So), the most relaxed—liquid disordered (Ld), and somewhat intermediate—liquid ordered (Lo) phase. Phase behavior of lipids depends on the melting temperature (Tm) of lipids in a mixture and the presence of cholesterol. Temperature-gradient experiments with individual lipids and phase diagrams for bi- and ternary lipid mixtures uncovered some interesting complexities in lipid phase behavior and, especially, the importance of cholesterol (and other sterols) for the liquid character of cellular membranes [58, 59]. Cholesterol has rigidifying effect on lipids with low Tm, but it also prevents formation of solid phase by high Tm lipids. Currently, a phase diagram for 4-component lipid mixture was reported [60]. Data generated with even more complex lipid mixtures are difficult to interpret and we may wait another 5–10 years for phase diagram of 5-component mixture. In addition, no classical lipid phases can be expected in non-equilibrium system of living cells. Therefore, a more general property of lipid mixtures, lipid ordering or conformational order of acyl chains, was suggested for studies of complex lipid mixtures and cell membranes in order to better characterize the rigidity of a local membrane environment [61]. Reporters of lipid ordering have been established—fluorescent probes which can sense the presence or absence of water molecules in membranes, solvatochromic membrane dyes. Higher penetration of water molecules to the hydrophobic core indicates reduced rigidity of the membrane. To date, the best membrane order probe is probably Laurdan and its derivative, C-Laurdan (see Chapters 3 and 10; [62]). More ordered membranes can be easily distinguished from disordered parts in phase separated monolayers and GUVs [61, 63]. Since solid (or gel)-like phase is not expected to last for long in living cells, there is no problem that these probes cannot distinguish Lo from So phase. In cells, differences in lipid ordering are expected to be less pronounced due to a high complexity of lipid mixture and the presence of proteins. Indeed, data from cell-derived vesicles, GPMVs or cell-derived blebs (Chapter 6), show significant but small difference in values detected by C-Laurdan [64]. Even smaller differences are observed in living cells for intracellular membranes compared to the plasma membrane at physiological temperature [19, 65]. This indicates that organization of membranes in living cells depends more on subtle variation of local membrane composition and properties than on a large segregation of molecules due to their physical properties. It is, therefore, important to focus on a local membrane environments and changes therein. But model membranes represent an excellent tool for studies of molecules in a defined environment and adjusting our methods for future cell experiments. Cell-derived vesicles then function as a bridge between these two worlds, artificial and natural. In addition, in silico simulations provide unprecedented tool to investigate local relations before doing costly experiments (Chapters 20 and 21).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cebecauer, M. (2015). Introduction: Membrane Properties (Good) for Life. In: Owen, D. (eds) Methods in Membrane Lipids. Methods in Molecular Biology, vol 1232. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1752-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1752-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1751-8

  • Online ISBN: 978-1-4939-1752-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics