Skip to main content

The Laurdan Spectral Phasor Method to Explore Membrane Micro-heterogeneity and Lipid Domains in Live Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1232))

Abstract

In this method paper we describe the spectral phasor analysis applied to Laurdan emission for the assessment of the fluidity of different membranes in live cells. We first introduce the general context and then we show how to obtain the spectral phasor from data acquired using a commercial microscope.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9(1):7–14

    Article  PubMed  CAS  Google Scholar 

  2. Mayor S, Rao M (2004) Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5(4):231–240

    Article  PubMed  CAS  Google Scholar 

  3. Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378(Pt 2):281–292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Tanimura N et al (2003) Dynamic changes in the mobility of LAT in aggregated lipid rafts upon T cell activation. J Cell Biol 160(1):125–135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Li K et al (2013) IFITM proteins restrict viral membrane hemifusion. PLoS Pathog 9(1):e1003124

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Gaus K et al (2006) Integrin-mediated adhesion regulates membrane order. J Cell Biol 174(5):725–734

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Ikonen E (2001) Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13(4):470–477

    Article  PubMed  CAS  Google Scholar 

  8. Hanzal-Bayer MF, Hancock JF (2007) Lipid rafts and membrane traffic. FEBS Lett 581(11):2098–2104

    Article  PubMed  CAS  Google Scholar 

  9. Gupta N, DeFranco AL (2007) Lipid rafts and B cell signaling. Semin Cell Dev Biol 18(5):616–626

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  PubMed  CAS  Google Scholar 

  11. Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Article  PubMed  CAS  Google Scholar 

  12. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  PubMed  CAS  Google Scholar 

  13. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Parasassi T et al (1997) Two-photon fluorescence microscopy of Laurdan generalized polarization domains in model and natural membranes. Biophys J 72(6):2413–2429

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Bagatolli LA, Gratton E (2000) Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J 78(1):290–305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Gaus K et al (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci U S A 100(26):15554–15559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Harris FM, Best KB, Bell JD (2002) Use of Laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochim Biophys Acta 1565(1):123–128

    Article  PubMed  CAS  Google Scholar 

  19. Romer W et al (2007) Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450(7170):670–675

    Article  PubMed  Google Scholar 

  20. Owen DM et al (2012) Quantitative imaging of membrane lipid order in cells and organisms. Nat Protoc 7(1):24–35

    Article  CAS  Google Scholar 

  21. Sanchez SA, Tricerri MA, Gratton E (2012) Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc Natl Acad Sci U S A 109(19):7314–7319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Jin L et al (2005) Cholesterol-enriched lipid domains can be visualized by di-4-ANEPPDHQ with linear and nonlinear optics. Biophys J 89(1):L04–L06

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Jin L et al (2006) Characterization and application of a new optical probe for membrane lipid domains. Biophys J 90(7):2563–2575

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Demchenko AP et al (2009) Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys J 96(9):3461–3470

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Klymchenko AS, Mely Y (2013) Fluorescent environment-sensitive dyes as reporters of biomolecular interactions. Prog Mol Biol Transl Sci 113:35–58

    Article  PubMed  CAS  Google Scholar 

  26. Kucherak OA et al (2012) Dipolar 3-methoxychromones as bright and highly solvatochromic fluorescent dyes. Phys Chem Chem Phys 14(7):2292–2300

    Article  PubMed  CAS  Google Scholar 

  27. Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18(14):3075–3078

    Article  PubMed  CAS  Google Scholar 

  28. Parasassi T, Conti F, Gratton E (1986) Time-resolved fluorescence emission spectra of Laurdan in phospholipid vesicles by multifrequency phase and modulation fluorometry. Cell Mol Biol 32(1):103–108

    PubMed  CAS  Google Scholar 

  29. Parasassi T et al (1990) Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J 57(6):1179–1186

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Kenworthy AK, Petranova N, Edidin M (2000) High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell 11(5):1645–1655

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Dietrich C et al (2002) Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys J 82(1 Pt 1):274–284

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Janes PW, Ley SC, Magee AI (1999) Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol 147(2):447–461

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Owen DM et al (2007) Optical techniques for imaging membrane lipid microdomains in living cells. Semin Cell Dev Biol 18(5):591–598

    Article  PubMed  CAS  Google Scholar 

  34. Parton RG (1994) Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem 42(2):155–166

    Article  PubMed  CAS  Google Scholar 

  35. Blank N et al (2007) Cholera toxin binds to lipid rafts but has a limited specificity for ganglioside GM1. Immunol Cell Biol 85(5):378–382

    Article  PubMed  CAS  Google Scholar 

  36. Jameson DM, Gratton E, Hall R (1984) The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry. Appl Spectrosc Rev 20(1):55–106

    Article  CAS  Google Scholar 

  37. Verveer PJ, Squire A, Bastiaens PI (2000) Global analysis of fluorescence lifetime imaging microscopy data. Biophys J 78(4):2127–2137

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Redford GI, Clegg RM (2005) Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc 15(5):805–815

    Article  PubMed  CAS  Google Scholar 

  39. Digman MA et al (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94(2):L14–L16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Fereidouni F, Bader AN, Gerritsen HC (2012) Spectral phasor analysis allows rapid and reliable unmixing of fluorescence microscopy spectral images. Opt Express 20(12):12729–12741

    Article  PubMed  CAS  Google Scholar 

  41. Angelova MI, Dimitrov DS (1986) Liposome electroformation. Faraday Discuss Chem Soc 81:303–311

    Article  CAS  Google Scholar 

  42. Stringari C et al (2011) Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci U S A 108(33):13582–13587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Ruan Q et al (2004) Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys J 87(2):1260–1267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Sanchez SA, Tricerri MA, Gratton E (2007) Interaction of high density lipoprotein particles with membranes containing cholesterol. J Lipid Res 48(8):1689–1700

    Article  PubMed  CAS  Google Scholar 

  45. Bagatolli LA (2006) To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta 1758(10):1541–1556

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Milka Stakic for cultivating the cells. We also want to thank Michelle A. Digman for helping with the GUV’s preparation, for the reagents for CT-B-A594 staining and valuable suggestions. We want to thank Susana A. Sanchez, Moshe Levi, and Luca Lanzano for important suggestions and help during cholesterol depletion experiments and William Rosales for his helpful assistance during GUV’s preparation. This work is supported in part by NIH-P41-RR03155, P41 GM103540 and NIH P50-GM076516.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Gratton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Golfetto, O., Hinde, E., Gratton, E. (2015). The Laurdan Spectral Phasor Method to Explore Membrane Micro-heterogeneity and Lipid Domains in Live Cells. In: Owen, D. (eds) Methods in Membrane Lipids. Methods in Molecular Biology, vol 1232. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1752-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1752-5_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1751-8

  • Online ISBN: 978-1-4939-1752-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics