Skip to main content

Analysis and Application of Viroid-Specific Small RNAs Generated by Viroid-Inducing RNA Silencing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1236))

Abstract

Viroids are noncoding RNA pathogens inducing severe to mild disease symptoms on agriculturally important crop plants. Viroid replication is entirely dependent on host transcription machinery, and their replication/accumulation in the infected cells can activate RNA silencing—a host defense mechanism that targets the viroid itself. RNA silencing produces in the cell large amounts of viroid-specific small RNAs of 21–24-nucleotides by cleaving (or “dicing”) entire molecules of viroid RNA. However, viroid replication is resistant to the effects of RNA silencing and disrupts the normal regulation of host gene expression, finally resulting in the development of disease symptoms on infected plant.

The molecular mechanisms of biological processes involving RNA silencing and underlying various aspects of viroid–host interaction, such as symptom expression, are of special interests to both basic and applied areas of viroid research. Here we present a method to create infectious viroid cDNA clones and RNA transcripts, the starting material for such analyses, using Hop stunt viroid as an example. Next we describe methods for the preparation and analysis of viroid-specific small RNAs by deep sequencing using tomato plants infected with Potato spindle tuber viroid as an example. Finally we introduce bioinformatics tools and methods necessary to process, analyze, and characterize these viroid-specific small RNAs. These bioinformatic methods provide a powerful new tool for the detection and discovery of both known and new viroid species.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Diener TO (1979) Viroids and viroid diseases. Wiley, New York, 252 pages

    Google Scholar 

  2. Flores R, Hernandez C, de Alba AEM, Daros JA, Di Serio F (2005) Viroids and viroid-host interactions. Annu Rev Phytopathol 43:117–139

    Article  PubMed  CAS  Google Scholar 

  3. Ding B (2009) The biology of viroid-host interactions. Annu Rev Phytopathol 47:105–131

    Article  PubMed  CAS  Google Scholar 

  4. Owens RA, Hammond RW (2009) Viroid pathogenicity: one process, many faces. Viruses 1:298–316

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Gago S, Elena SF, Flores R, Sanjuan R (2009) Extremely high mutation rate of a hammerhead viroid. Science 323:1308

    Article  PubMed  CAS  Google Scholar 

  6. Elena SF, Gomez G, Daros JA (2009) Evolutionary constraints to viroid evolution. Viruses 1:241–254

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Cress DE, Kiefer MC, Owens RA (1983) Construction of infectious potato spindle tuber viroid cDNA clones. Nucleic Acids Res 11: 6821–6835

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Meshi T, Ishikawa M, Ohno T, Okada Y, Sano T, Ueda I, Shikata E (1984) Double-stranded cDNAs of hop stunt viroid are infectious. J Biochem 95:1521–1524

    PubMed  CAS  Google Scholar 

  9. Tabler M, Sänger HL (1985) Infectivity studies on different potato spindle tuber viroid (PSTV) RNAs synthesized in vitro with the SP6 transcription system. EMBO J 4:2191–2199

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Visvader JE, Forster AC, Symons RH (1985) Infectivity and in vitro mutagenesis of monomeric cDNA clones of citrus exocortis viroid indicates the site of processing of viroid precursors. Nucleic Acids Res 13:5843–5856

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Diener TO (1986) Viroid processing: a model involving the central conserved region and hairpin I. Proc Natl Acad Sci U S A 83:58–62

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Feldstein PA, Hu Y, Owens RA (1998) Precisely full length, circularizable, complementary RNA: an infectious form of potato spindle tuber viroid. Proc Natl Acad Sci U S A 95:6560–6565

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Itaya A, Folimonov A, Matsuda Y, Nelson RS, Ding B (2001) Potato spindle tuber viroid as inducer of RNA silencing in infected tomato. Mol Plant Microbe Interact 14:1332–1334

    Article  PubMed  CAS  Google Scholar 

  15. Papaefthimiou I, Hamilton AJ, Denti MA, Baulcombe DC, Tsagris M, Tabler M (2001) Replicating potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing. Nucleic Acids Res 29:2395–2400

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Itaya A, Zhong X-H, Bundschuh R, Qi Y-J, Wang Y, Takeda R, Harris AR, Molina C, Nelson RS, Ding B (2007) A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J Virol 81:2980–2994

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Wang MB, Bian XY, Wu LM, Liu LX, Smith NA, Isenegger D, Wu RM, Masuta C, Vance VB, Watson JM, Rezaian A, Dennis ES, Waterhouse PM (2004) On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proc Natl Acad Sci U S A 101:3275–3280

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Navarro B, Gisel A, Rodio ME, Delgado S, Flores R, Di Serio F (2012) Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide degradation of a host mRNA as predicted by RNA silencing. Plant J 70:991–1003

    Article  PubMed  CAS  Google Scholar 

  19. Di Serio F, Gisel A, Navarro B, Delgado S, de Alba AEM, Donvito G et al (2009) Deep sequencing of the small RNAs derived from two symptomatic variants of a chloroplastic viroid:implications for their genesis and for pathogenesis. PLoS One 4(10):e7539. doi: 10.1371/journal.pone.0007539

    Article  PubMed  PubMed Central  Google Scholar 

  20. St-Pierre PI, Hassen F, Thompson D, Perreault JP (2009) Characterization of the siRNAs associated with peach latent mosaic viroid infection. Virology 383:178–182

    Article  PubMed  CAS  Google Scholar 

  21. Navarro B, Pantaleo V, Gisel A, Moxon S, Dalmay T, Bisztray G et al (2009) Deep sequencing of viroid-derived small RNAs from grapevine provides new insights on the role of RNA silencing in plant-viroid interaction. PLoS One 4:e7686

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martinez G, Donaire L, Llave C, Pallas V, Gomez G (2010) High-throughput sequencing of Hop stunt viroid-derived small RNAs from cucumber leaves and phloem. Mol Plant Pathol 11:347–359

    Article  PubMed  CAS  Google Scholar 

  23. Wang Y, Shibuya M, Taneda A, Kurauchi T, Senda M, Owens RA, Sano T (2011) Accumulation of Potato spindle tuber viroid-specific small RNAs is accompanied by specific changes in gene expression in two tomato cultivars. Virology 413:72–83

    Article  PubMed  CAS  Google Scholar 

  24. Owens RA, Tech KB, Shao JY, Sano T, Baker CJ (2012) Global analysis of tomato gene expression during potato spindle tuber viroid infection reveals a complex array of changes affecting hormone signaling. Mol Plant Microbe Interact 25:582–598

    Article  PubMed  CAS  Google Scholar 

  25. Owens RA, Sano T, Duran-Vila N (2012) Plant viroids: isolation, characterization/detection, and analysis. Methods Mol Biol 894:253–271

    Article  PubMed  CAS  Google Scholar 

  26. Matoušek J, Orctová L, Steger L, Riesner D (2004) Biolistic inoculation of plants with viroid nucleic acids. J Virol Methods 122:153–164

    Article  PubMed  Google Scholar 

  27. Sumbrook J, Russell DW (2001) Preparation of plasmid DNA by alkaline lysis with SDS. In: Molecular cloning. A laboratory manual, vol 1, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1.31–1.34

    Google Scholar 

  28. Sumbrook J, Russell DW (2001) The Hanahan method for preparation and transformation of competent E. coli: high-efficiency transformation. In: Molecular cloning. A laboratory manual, vol 1, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1.105–1.111

    Google Scholar 

  29. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of flesh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  30. Curtin S, Zsögön A, Watson J, Waterhouse P (2012) Isolation and analysis of small RNAs from virus-infected plants. In: Watson JM, Wang M-B (eds) Antiviral resistance in plants, vol 894, Methods in molecular biology. Humana Press, New York, pp 173–189

    Chapter  Google Scholar 

  31. Smith N, Eamens A (2012) Isolation and detection of small RNAs from plant tissues. In: Watson JM, Wang M-B (eds) Methods in molecular biology, vol 894. Humana Press, New York, pp 155–172

    Google Scholar 

  32. Zhu Q-H, Helliwell C (2012) Generation of plant small RNA cDNA libraries for high-throughput sequencing. In: Watson JM, Wang M-B (eds) Antiviral resistance in plants, vol 894, Methods in molecular biology. Humana Press, New York, pp 123–137

    Chapter  Google Scholar 

  33. Di Serio F, de Alba AEM, Navarro B, Gisel A, Flores R (2010) RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. J Virol 84:2477–2489

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li R, Gao S, Hernandez AG, Wechter WP, Fei Z, Ling KS (2012) Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS One 7:e37127

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Bolduc F, Hoareau C, St-Pierre P, Perreault JP (2010) In-depth sequencing of the siRNAs associated with peach latent mosaic viroid infection. BMC Mol Biol 11:16

    Article  PubMed  PubMed Central  Google Scholar 

  36. Coetzee B, Freeborough MJ, Maree HJ, Celton JM, Rees DJG, Burger JT (2010) Deep sequencing analysis of viruses infecting grapevines: virome of a vineyard. Virology 400: 157–163

    Article  PubMed  CAS  Google Scholar 

  37. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi:10.1186/gb-2009-10-3-r25

    Article  PubMed  PubMed Central  Google Scholar 

  38. Diermann N, Matoušek J, Junge M, Riesner D, Steger G (2010) Characterization of plant miRNAs and small RNAs derived from potato spindle tuber viroid (PSTVd) in infected tomato. Biol Chem 391:1370–1390

    Article  Google Scholar 

  39. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Isakov O, Modai S, Shomron N (2011) Pathogen detection using short-RNA deep sequencing subtraction and assembly. Bioinformatics 27: 2027–2030

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Wu QF, Wang Y, Cao MJ, Pantaleo V, Burgyan J, Li W-X et al (2012) Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. Proc Natl Acad Sci U S A 109:3938–3943

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Web Links

Download references

Acknowledgment

We thank Dr. Robert A Owens (USDA/ARS, MPPL, USA) for critical reading and valuable suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Sano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Adkar-Purushothama, C.R., Zhang, Z., Li, S., Sano, T. (2015). Analysis and Application of Viroid-Specific Small RNAs Generated by Viroid-Inducing RNA Silencing. In: Uyeda, I., Masuta, C. (eds) Plant Virology Protocols. Methods in Molecular Biology, vol 1236. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1743-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1743-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1742-6

  • Online ISBN: 978-1-4939-1743-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics