Skip to main content

Synthesis of Glycosaminoglycan Mimetics Through Sulfation of Polyphenols

  • Protocol
  • First Online:
Glycosaminoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1229))

Abstract

In nearly all cases of biological activity of sulfated GAGs, the sulfate group(s) are critical for interacting with target proteins. A growing paradigm is that appropriate small, sulfated, nonsaccharide GAG mimetics can be designed to either mimic or interfere with the biological functions of natural GAG sequences resulting in the discovery of either antagonist or agonist agents. A number of times these sulfated NSGMs can be computationally designed based on the parent GAG–protein interaction. The small sulfated NSGMs may possess considerable aromatic character so as to engineer hydrophobic, hydrogen-bonding, Coulombic or cation–pi forces in their interactions with target protein(s) resulting in higher specificity of action relative to parent GAGs. The sulfated NSGMs can be easily synthesized in one step from appropriate natural polyphenols through chemical sulfation under microwave-based conditions. We describe step-by-step procedures to perform microwave-based sulfation of several small polyphenol scaffolds so as to prepare homogenous NSGMs containing one to more than 10 sulfate groups per molecule in high yields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72:455–482

    Article  CAS  PubMed  Google Scholar 

  2. Silbert JE, Sugumaran G (2002) Biosynthesis of chondroitin/dermatan sulfate. IUBMB Life 54:177–186

    Article  CAS  PubMed  Google Scholar 

  3. Kreuger J, Kjellén L (2012) Heparan sulfate biosynthesis. Regulation and variability. J Histochem Cytochem 60:898–907

    Article  PubMed Central  PubMed  Google Scholar 

  4. Khan S, Fung KW, Rodriguez E, Patel R, Gor J, Mulloy B, Perkins SJ (2013) The solution structure of heparan sulfate differs from that of heparin, Implications for function. J Biol Chem 288:27737–27751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Khan S, Gor J, Mulloy B, Perkins SJ (2010) Semi-rigid solution structures of heparin by constrained X-ray scattering modeling: new insight into heparin-protein complexes. J Mol Biol 395:504–521, Erratum in (2013) J Mol Biol 425:1847

    Article  CAS  PubMed  Google Scholar 

  6. Gallagher JT (2012) Heparan sulphate: a heparin in miniature. Handb Exp Pharmacol 207:347–360

    Article  CAS  PubMed  Google Scholar 

  7. Desai UR (2013) The promise of sulfated synthetic small molecules as modulators of glycosaminoglycan function. Future Med Chem 5:1363–1366

    Article  CAS  PubMed  Google Scholar 

  8. Whitelock JM, Iozzo RV (2005) Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 105:2745–2764

    Article  CAS  PubMed  Google Scholar 

  9. Al-Horani RA, Desai UR (2010) Chemical sulfation of small molecules – advances and challenges. Tetrahedron 66:2907–2918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Desai UR (2004) New antithrombin-based anticoagulants. Med Res Rev 24:151–181

    Article  CAS  PubMed  Google Scholar 

  11. Olson ST, Björk I, Bock SC (2002) Identification of critical molecular interactions mediating heparin activation of antithrombin: implications for the design of improved heparin anticoagulants. Trends Cardiovasc Med 12:198–205

    Article  CAS  PubMed  Google Scholar 

  12. Petitou M, van Boeckel CA (2004) A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew Chem Int Ed 43:3118–3133

    Article  CAS  Google Scholar 

  13. Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, Cohen GH, Eisenberg RJ, Rosenberg RD, Spear PG (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22

    Article  CAS  PubMed  Google Scholar 

  14. Copeland R, Balasubramaniam A, Tiwari V, Zhang F, Bridges A, Linhardt RJ, Shukla D, Liu J (2008) Using a 3-O-sulfated heparin octasaccharide to inhibit the entry of herpes simplex virus type 1. Biochemistry 47:774–5783

    Article  Google Scholar 

  15. Raghuraman A, Mosier PD, Desai UR (2010) Understanding dermatan sulfate-heparin cofactor II interaction through virtual library screening. ACS Med Chem Lett 1:281–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Raghuraman A, Mosier PD, Desai UR (2006) Finding a needle in a haystack: development of a combinatorial virtual screening approach for identifying high specificity heparin/heparan sulfate sequence(s). J Med Chem 49:3553–3562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Pichert A, Samsonov SA, Theisgen S, Thomas L, Baumann L, Schiller J, Beck-Sickinger AG, Huster D, Pisabarro MT (2012) Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling. Glycobiology 22:134–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bitomsky W, Wade RC (1999) Docking of glycosaminoglycans to heparin-binding proteins: validation for aFGF, bFGF, and antithrombin and application to IL-8. J Am Chem Soc 121:3004–3013

    Article  CAS  Google Scholar 

  19. Grootenhuis PDJ, van Boeckel CAA (1991) Constructing a molecular model of the interaction between antithrombin III and a potent heparin analog. J Am Chem Soc 113:2743–2747

    Article  CAS  Google Scholar 

  20. Sears P, Wong CH (1998) Enzyme action in glycoprotein synthesis. Cell Mol Life Sci 54:223–252

    Article  CAS  PubMed  Google Scholar 

  21. Sears P, Wong CH (2001) Toward automated synthesis of oligosaccharides and glycoproteins. Science 291:2344–2350

    Article  CAS  PubMed  Google Scholar 

  22. Seeberger PH, Haase WC (2000) Solid-phase oligosaccharide synthesis and combinatorial carbohydrate libraries. Chem Rev 100:4349–4393

    Article  CAS  PubMed  Google Scholar 

  23. Heidlas JE, Williams KW, Whitesides GM (1992) Nucleoside phosphate sugars: syntheses on practical scales for use as reagents in enzymatic preparation of oligosaccharides and glycoconjugates. Acc Chem Res 25:307–314

    Article  CAS  Google Scholar 

  24. Karst NA, Linhardt RJ (2003) Recent chemical and enzymatic approaches to the synthesis of glycosaminoglycan oligosaccharides. Curr Med Chem 10:1993–2031

    Article  CAS  PubMed  Google Scholar 

  25. Borgia JA, Malkar NB, Abbasi HU, Fields GB (2001) Difficulties encountered during glycopeptide syntheses. J Biomol Tech 12:44–68

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Hu YP, Lin SY, Huang CY, Zulueta MM, Liu JY, Chang W, Hung SC (2011) Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host-cell interaction. Nat Chem 3:557–563

    Article  CAS  PubMed  Google Scholar 

  27. Sheng GJ, Oh YI, Chang S-K, Hsieh-Wilson LC (2013) Tunable heparan sulfate mimetics for modulating chemokine activity. J Am Chem Soc 135:10898–10901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. de Paz JL, Seeberger PH (2008) Deciphering the glycosaminoglycan code with the help of microarrays. Mol Biosyst 4:707–711

    Article  PubMed  Google Scholar 

  29. Yin J, Seeberger PH (2010) Applications of heparin and heparan sulfate microarrays. Methods Enzymol 478:197–218

    Article  CAS  PubMed  Google Scholar 

  30. Petitou M, Nancy-Portebois V, Dubreucq G, Motte V, Meuleman D, de Kort M, van Boeckel CA, Vogel GM, Wisse JA (2009) From heparin to EP217609: the long way to a new pentasaccharide-based neutralisable anticoagulant with an unprecedented pharmacological profile. Thromb Haemostas 102:804–810

    CAS  Google Scholar 

  31. Saxena K, Schieborr U, Anderka O, Duchardt-Ferner E, Elshorst B, Gande SL, Janzon J, Kudlinzki D, Sreeramulu S, Dreyer MK, Wendt KU, Herbert C, Duchaussoy P, Bianciotto M, Driguez PA, Lassalle G, Savi P, Mohammadi M, Bono F, Schwalbe H (2010) Influence of heparin mimetics on assembly of the FGF · FGFR4 signaling complex. J Biol Chem 285:26628–26640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Sarrazin S, Bonnaffé D, Lubineau A, Lortat-Jacob H (2005) Heparan sulfate mimicry: a synthetic glycoconjugate that recognizes the heparin binding domain of interferon-gamma inhibits the cytokine activity. J Biol Chem 280:37558–37564

    Article  CAS  PubMed  Google Scholar 

  33. Lubineau A, Lortat-Jacob H, Gavard O, Sarrazin S, Bonnaffé D (2004) Synthesis of tailor-made glycoconjugate mimetics of heparan sulfate that bind IFN-γ in the nanomolar range. Chem Eur J 10:4265–4282

    Article  CAS  PubMed  Google Scholar 

  34. Ferro V, Dredge K, Liu L, Hammond E, Bytheway I, Li C, Johnstone K, Karoli T, Davis K, Copeman E, Gautam A (2007) PI-88 and novel heparan sulfate mimetics inhibit angiogenesis. Semin Thromb Hemostas 33:557–568

    Article  CAS  Google Scholar 

  35. Nimjee SM, Oney S, Volovyk Z, Bompiani KM, Long SB, Hoffman M, Sullenger BA (2009) Synergistic effect of aptamers that inhibit exosites 1 and 2 on thrombin. RNA 15:2105–2111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Freeman C, Liu L, Banwell MG, Brown KJ, Bezos A, Ferro V, Parish CR (2005) Use of sulfated linked cyclitols as heparin sulfate mimetics to probe the heparin/heparan sulfate binding specificity of proteins. J Biol Chem 280:8842–8849

    Article  CAS  PubMed  Google Scholar 

  37. Türk H, Haag R, Alban S (2004) Dendritic polyglycerol sulfates as new heparin analogues and potent inhibitors of the complement system. Bioconjug Chem 15:162–167

    Article  PubMed  Google Scholar 

  38. Ferro V, Liu L, Johnstone KD, Wimmer N, Karoli T, Handley P, Rowley J, Dredge K, Li CP, Hammond E, Davis K, Sarimaa L, Harenberg J, Bytheway I (2012) Discovery of PG545: a highly potent and simultaneous inhibitor of angiogenesis, tumor growth, and metastasis. J Med Chem 55:3804–3813

    Article  CAS  PubMed  Google Scholar 

  39. Gunnarsson GT, Desai UR (2002) Designing small, nonsugar activators of antithrombin using hydropathic interaction analyses. J Med Chem 45:1233–1243

    Article  CAS  PubMed  Google Scholar 

  40. Gunnarsson GT, Desai UR (2002) Interaction of designed sulfated flavanoids with antithrombin: lessons on the design of organic activators. J Med Chem 45:4460–4470

    Article  CAS  PubMed  Google Scholar 

  41. Raghuraman A, Liang A, Krishnasamy C, Lauck T, Gunnarsson GT, Desai UR (2009) On designing non-saccharide, allosteric activators of antithrombin. Eur J Med Chem 44:2626–2631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Al-Horani RA, Liang A, Desai UR (2011) Designing nonsaccharide, allosteric activators of antithrombin for accelerated inhibition of factor Xa. J Med Chem 54:6125–6138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Abdel Aziz MH, Sidhu PS, Liang A, Kim JY, Mosier PD, Zhou Q, Farrell DH, Desai UR (2012) Designing allosteric regulators of thrombin. Monosulfated benzofuran dimers selectively interact with Arg173 of exosite 2 to induce inhibition. J Med Chem 55:6888–6897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Sidhu PS, Abdel Aziz MH, Sarkar A, Mehta AY, Zhou Q, Desai UR (2013) Designing allosteric regulators of thrombin. Exosite 2 features multiple sub-sites that can be targeted by sulfated small molecules for inducing inhibition. J Med Chem 56:5059–5070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Al-Horani RA, Ponnusamy P, Mehta AY, Gailani D, Desai UR (2013) Sulfated Pentagalloylglucoside is a potent, allosteric, and selective inhibitor of factor XIa. J Med Chem 56:867–878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Dusza JP, Joseph JP, Bernstein S (1985) The preparation of estradiol-17 beta sulfates with triethylamine-sulfur trioxide. Steroids 45:303–315

    Article  CAS  PubMed  Google Scholar 

  47. Kitagawa K, Aida C, Fujiwara H, Yagami T, Futaki S, Kogire M, Ida J, Inoue K (2001) Facile solid-phase synthesis of sulfated tyrosine-containing peptides: total synthesis of human big gastrin-II and cholecystokinin (CCK)-39. J Org Chem 66:1–10

    Article  CAS  PubMed  Google Scholar 

  48. Lee JC, Lu XA, Kulkarni SS, Wen YS, Hung SC (2004) Synthesis of heparin oligosaccharides. J Am Chem Soc 126:476–477

    Article  CAS  PubMed  Google Scholar 

  49. Tully SE, Mabon R, Gama CI, Tsai SM, Liu X, Hsieh-Wilson LC (2004) A chondroitin sulfate small molecule that stimulates neuronal growth. J Am Chem Soc 126:7736–7737

    Article  CAS  PubMed  Google Scholar 

  50. Young T, Kiessling LL (2002) A strategy for the synthesis of sulfated peptides. Angew Chem Int Ed Engl 41:3449–3451

    Article  CAS  PubMed  Google Scholar 

  51. Krylov VB, Ustyuzhanina NE, Grachev AA, Nifantiev NE (2008) Efficient acid-promoted per-O-sulfation of organic polyols. Tetrahedron Lett 49:5877–5879

    Article  CAS  Google Scholar 

  52. Raghuraman A, Riaz M, Hindle M, Desai UR (2007) Rapid and efficient microwave-assisted synthesis of highly sulfated organic scaffolds. Tetrahedron Lett 48:6754–6758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Monien BH, Henry BL, Raghuraman A, Hindle M, Desai UR (2006) Novel chemo-enzymatic oligomers of cinnamic acids as direct and indirect inhibitors of coagulation proteinases. Bioorg Med Chem 14:7988–7998

    Article  CAS  PubMed  Google Scholar 

  54. Henry BL, Monien BH, Bock PE, Desai UR (2007) A novel allosteric pathway of thrombin inhibition: exosite II mediated potent inhibition of thrombin by chemo-enzymatic, sulfated dehydropolymers of 4-hydroxycinnamic acids. J Biol Chem 282:31891–31899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Henry BL, Abdel Aziz M, Zhou Q, Desai UR (2010) Sulfated, low-molecular-weight lignins are potent inhibitors of plasmin, in addition to thrombin and factor Xa: novel opportunity for controlling complex pathologies. Thromb Haemost 103:507–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Saluja B, Thakkar JN, Li H, Desai UR, Sakagami M (2013) Novel low molecular weight lignins as potential anti-emphysema agents: in vitro triple inhibitory activity against elastase, oxidation and inflammation. Pulm Pharmacol Ther 26:296–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Raghuraman A, Tiwari V, Zhao Q, Shukla D, Debnath AK, Desai UR (2007) Viral inhibition studies on sulfated lignin, a chemically modified biopolymer and a potential mimic of heparan sulfate. Biomacromolecules 8:1759–1763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Raman K, Karuturi R, Swarup VP, Desai UR, Kuberan B (2012) Discovery of novel sulfonated small molecules that inhibit vascular tube formation. Bioorg Med Chem Lett 22:4467–4470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Khanbabaee K, Lötzerich K (1997) Efficient total synthesis of the natural products 2,3,4,6-tetra-O-galloyl-D-glucopyranose, 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose and the unnatural 1,2,3,4,6-penta-O-galloyl-α-d-glucopyranose. Tetrahedron 53:10725–10732

    Article  CAS  Google Scholar 

  60. Karuturi R, Al-Horani RA, Mehta SC, Gailani D, Desai UR (2013) Discovery of allosteric modulators of factor XIa by targeting hydrophobic domains adjacent to its heparin-binding site. J Med Chem 56:2415–2428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Liang A, Thakkar JN, Desai UR (2010) Study of physico-chemical properties of novel highly sulfated, aromatic, mimetics of heparin and heparan sulfate. J Pharm Sci 99:1207–1216

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh R. Desai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Al-Horani, R.A., Karuturi, R., Verespy, S., Desai, U.R. (2015). Synthesis of Glycosaminoglycan Mimetics Through Sulfation of Polyphenols. In: Balagurunathan, K., Nakato, H., Desai, U. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 1229. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1714-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1714-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1713-6

  • Online ISBN: 978-1-4939-1714-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics