Skip to main content

Maize (Zea mays L.)

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1223))

Abstract

Agrobacterium tumefaciens-mediated transformation is an effective method for introducing genes into maize. In this chapter, we describe a detailed protocol for genetic transformation of the maize genotype Hi II. Our starting plant material is immature embryos cocultivated with an Agrobacterium strain carrying a standard binary vector. In addition to step-by-step laboratory transformation procedures, we include extensive details in growing donor plants and caring for transgenic plants in the greenhouse.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wang K, Frame BR, Marcell L (2003) Maize genetic transformation. In: Jaiwal PK, Singh RP (eds) Plant genetic engineering: improvement of food crops. Sci-Tech, Houston, TX, pp 175–217

    Google Scholar 

  2. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  PubMed  Google Scholar 

  3. Zhao ZY, Gu W, Cai T, Tagliani LA, Hondred D, Bond D, Krell S, Rudert ML, Bruce WB, Pierce DA (1998) Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop News Lett 72: 34–37

    Google Scholar 

  4. Shou H, Frame B, Whitham S, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208

    Article  CAS  Google Scholar 

  5. Matzke MA, Aufsatz W, Kanno T, Mette MF, Matzke AJ (2002) Homology-dependent gene silencing and host defense in plants. Adv Genet 46:235–275

    Article  CAS  PubMed  Google Scholar 

  6. Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SE, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  8. Sidorov V, Gilbertson L, Addae P, Duncan D (2006) Agrobacterium-mediated transformation of seedling-derived maize callus. Plant Cell Rep 25:320–328

    Article  CAS  PubMed  Google Scholar 

  9. Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Paz M, Shou H, Guo Z-B, Zhang Z-Y, Banerjee A, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179

    Article  CAS  Google Scholar 

  11. Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

  12. White J, Chang S-YP, Bibb MJ, Bibb MJ (1990) A cassette containing the bar gene of Streptomyces hygroscopicus: a selectable marker for plant transformation. Nucleic Acids Res 18:1062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  14. Carrington JC, Freed DD (1990) Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region. J Virol 64:1590–1597

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Mason HS, DeWald DB, Mullet JE (1995) Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell 5:241–251

    Google Scholar 

  16. Armstrong CL, Green CE, Phillips RL (1991) Development and availability of germplasm with high Type II culture formation response. Maize Genet Coop News Lett 65:92–93

    Google Scholar 

  17. Zhao Z-Y, Gu W, Cai T, Tagliani LA, Hondred D, Bond D, Schroeder S, Rudert M, Pierce DA (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    Article  CAS  Google Scholar 

  18. An G, Ebert P, Mitra A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic, Dordrecht, Boston, pp 1–19

    Google Scholar 

  19. Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci Sinica 18:659–668

    Google Scholar 

  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  21. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid Plant genetics. Nature 303:179–180

    Article  CAS  Google Scholar 

  22. Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  23. Holsters M, Silva B, Van Vliet F, Genetello C, De Block M, Dhaese P, Depicker A, Inze D, Engler G, Villarroel R, Van Montagu M, Schell J (1980) The functional organization of the nopaline A. tumefaciens plasmid pTiC58. Plasmid 3:212–230

    Article  CAS  PubMed  Google Scholar 

  24. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  CAS  PubMed  Google Scholar 

  25. Hepburn AG, White J, Pearson L, Maunders MJ, Clarke LE, Prescott AG, Blundy KS (1985) The use of pNJ5000 as an intermediate vector for the genetic manipulation of Agrobacterium Ti-plasmids. J Gen Microbiol 131:2961–2969

    CAS  PubMed  Google Scholar 

  26. Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of l-proline. Planta 164:207–214

    Article  CAS  PubMed  Google Scholar 

  27. McCain JW, Kamo KK, Hodges TK (1988) Characterization of somatic embryo development and plant regeneration from friable maize callus cultures. Bot Gaz 149:16–20

    Article  Google Scholar 

  28. Fullner KJ, Lara JC, Nester EW (1996) Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273:1107–1109

    Article  CAS  PubMed  Google Scholar 

  29. Cavins TJ, Whipker BE, Fonteno WC, Harden B, McCall I, Gibson JL (2000) Monitoring and managing pH and EC using the PourThru extraction method. Horticulture Information Leaflet 590:1–17

    Google Scholar 

  30. Nelson PV (2011) Greenhouse operations and management 7/e. Prentice Hall, Upper Saddle River, NJ, pp 169–170, 214–223, 294–302

    Google Scholar 

Download references

Acknowledgments

The authors thank Hanna Sundberg and Grace Beckett for their assistance in the greenhouse and lab and Aaron Brand for his help with greenhouse care and maintenance. This project was supported in part by the USDA National Institute of Food and Agriculture, Hatch project number # IOW05162, by the State of Iowa funds, and the National Science Foundation (DBI-0923827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bronwyn Frame .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Frame, B., Warnberg, K., Main, M., Wang, K. (2015). Maize (Zea mays L.). In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 1223. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1695-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1695-5_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1694-8

  • Online ISBN: 978-1-4939-1695-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics