Skip to main content

Brachypodium distachyon

  • Protocol
  • First Online:
Book cover Agrobacterium Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1223))

Abstract

The small grass Brachypodium distachyon has attributes that make it an excellent model for the development and improvement of cereal crops and bioenergy feedstocks. To realize the potential of this system, many tools have been developed (e.g., the complete genome sequence, a large collection of natural accessions, a high density genetic map, BAC libraries, EST sequences, microarrays, etc.). In this chapter, we describe a high-efficiency transformation system, an essential tool for a modern model system. Our method utilizes the natural ability of Agrobacterium tumefaciens to transfer a well-defined region of DNA from its tumor-inducing (Ti) plasmid DNA into the genome of a host plant cell. Immature embryos dissected out of developing B. distachyon seeds generate an embryogenic callus that serves as the source material for transformation and regeneration of transgenic plants. Embryogenic callus is cocultivated with A. tumefaciens carrying a recombinant plasmid containing the desired transformation sequence. Following cocultivation, callus is transferred to selective media to identify and amplify the transgenic tissue. After 2–5 weeks on selection media, transgenic callus is moved onto regeneration media for 2–4 weeks until plantlets emerge. Plantlets are grown in tissue culture until they develop roots and are transplanted into soil. Transgenic plants can be transferred to soil 6–10 weeks after cocultivation. Using this method with hygromycin selection, transformation efficiencies average 42 %, and it is routinely observed that 50–75 % of cocultivated calluses produce transgenic plants. The time from dissecting out embryos to having the first transgenic plants in soil is 14–18 weeks, and the time to harvesting transgenic seeds is 20–31 weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R et al (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 4:1539–1555

    Article  Google Scholar 

  2. Garvin D, Gu Y, Hasterok R, Hazen S, Jenkins G, Mockler T et al (2008) Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research. Plant Genome 48:69–84

    Google Scholar 

  3. Vogel J, Bragg J (2009) Brachypodium distachyon, a new model for the Triticeae. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. Springer, New York, pp 427–449

    Chapter  Google Scholar 

  4. Bablak P, Draper J, Davey M, Lynch P (1995) Plant regeneration and micropropagation of Brachypodium distachyon. Tissue Organ Cult 42:97–107

    Article  Google Scholar 

  5. Christiansen P, Andersen CH, Didion T, Folling M, Nielsen KK (2005) A rapid and efficient transformation protocol for the grass Brachypodium distachyon. Plant Cell Rep 23:751–758

    Article  CAS  PubMed  Google Scholar 

  6. Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S et al (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  7. Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    Article  CAS  PubMed  Google Scholar 

  8. Svitashev S, Somers D (2002) Characterization of transgene loci in plants using FISH: a picture is worth a thousand words. Plant Cell Tissue Organ Cult 69:205–214

    Article  CAS  Google Scholar 

  9. Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    Article  CAS  PubMed  Google Scholar 

  10. Feldmann K (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1:71–82

    Article  CAS  Google Scholar 

  11. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  12. Jeon J, Lee S, Jung K, Jun S, Jeong D, Lee J et al (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  CAS  PubMed  Google Scholar 

  13. Sallaud C, Meynard D, van Boxtel J, Gay C, Bès M, Brizard JP et al (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396–1408

    CAS  PubMed  Google Scholar 

  14. Ma Y, Liu L, Zhu C, Sun C, Xu B, Fang J et al (2009) Molecular analysis of rice plants harboring a multi-functional T-DNA tagging system. J Genet Genomics 36:267–276

    Article  CAS  PubMed  Google Scholar 

  15. Vogel J, Garvin D, Leong O, Hayden D (2006) Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tissue Organ Cult 85:199–211

    Article  Google Scholar 

  16. Vogel J, Hill T (2008) High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep 27:471–478

    Article  CAS  PubMed  Google Scholar 

  17. Vain P, Worland B, Thole V, McKenzie N, Alves SC, Opanowicz M et al (2008) Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. Plant Biotechnol J 6:236–245

    Article  CAS  PubMed  Google Scholar 

  18. Păcurar DI, Thordal-Christensen H, Nielsen KK, Lenk I (2008) A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L. Transgenic Res 17:965–975

    Article  PubMed  Google Scholar 

  19. Komari T, Takakura Y, Ueki J, Kato N, Ishida Y, Hiei Y (2006) Binary vectors and super-binary vectors. Methods Mol Biol 343:15–41

    CAS  PubMed  Google Scholar 

  20. Bragg JN, Wu J, Gordon SP, Guttman MA, Thilmony RL, Lazo GR, Gu YQ, Vogel JP (2012) Generation and characterization of the Western Regional Research Center Brachypodium T-DNA insertional mutant collection. PLoS One 7(9):e41916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by USDA CRIS project 5325-21000-017-00 and by the Office of Science (BER), US Department of Energy, Interagency Agreement No. DE-AI02-07ER64452.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Vogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bragg, J.N., Anderton, A., Nieu, R., Vogel, J.P. (2015). Brachypodium distachyon . In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 1223. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1695-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1695-5_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1694-8

  • Online ISBN: 978-1-4939-1695-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics