Skip to main content

Isolation of Nuclei in Media Containing an Inert Polymer to Mimic the Crowded Cytoplasm

  • Protocol
  • First Online:
  • 3670 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1228))

Abstract

Within cells, the nucleus is surrounded by the cytoplasm which contains diffusible macromolecules at a high concentration (>100 mg/ml). When cells are broken to isolate nuclei by current methods these macromolecules are dispersed, and to reproduce the environment of nuclei in vivo more closely we have developed a method to isolate them in a medium where cytoplasmic macromolecules are replaced by an inert, volume-occupying polymer and which is essentially cation-free. Nuclei isolated by this method resemble closely those prepared by conventional procedures as seen by optical and electron microscopy, and their internal compartments (nucleoli, PML and Cajal bodies, transcription centers, and splicing speckles) and transcriptional activity are conserved. This procedure is efficient for mammalian cells that normally grow in suspension and do not have an extensive cytoskeleton, and requires ~30 min.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Anderson NG, Wilbur KM (1952) Studies on isolated cell components IV. The effect of various solutions on the isolated rat liver nucleus. J Gen Physiol 35:781–796

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Busch H, Daskal Y (1977) Methods for isolation of nuclei and nucleoli. Methods Cell Biol 16:1–44

    Article  PubMed  CAS  Google Scholar 

  3. Aaronson RP, Woo E (1981) Organization in the cell nucleus: divalent cations modulate the distribution of condensed and diffuse chromatin. J Cell Biol 90:181–186

    Article  PubMed  CAS  Google Scholar 

  4. Engelhardt M (2004) Condensation of chromatin in situ by cation-dependent charge shielding and aggregation. Biochem Biophys Res Comm 324:1210–1214

    Article  PubMed  CAS  Google Scholar 

  5. Kellermayer M, Ludany A, Jobst K et al (1986) Cocompartmentation of proteins and K+ within the living cell. Proc Natl Acad Sci U S A 83:1011–1015

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Edelmann L (1989) The physical state of potassium in frog skeletal muscle studied by ion-sensitive microelectrodes and by electron microscopy. Scanning Microsc 3:1219–1230

    PubMed  CAS  Google Scholar 

  7. Ling GN (1990) The physical state of potassium ion in the living cell. Scanning Microsc 4:737–750

    PubMed  CAS  Google Scholar 

  8. Negendank M, Shaller C (2005) Multiple fractions of sodium exchange in human lymphocytes. J Cell Physiol 104:443–459

    Article  Google Scholar 

  9. Lüthi D, Günzel D, McGuigan JAS (1999) Mg-ATP binding, its modification by spermine, the relevance to cytosolic Mg2+ buffering, changes in the intracellular ionized Mg2+ concentration and the estimation of Mg2+ by 31P- NMR. Exp Physiol 84:231–252

    Article  PubMed  Google Scholar 

  10. Günther T (2006) Concentration, compartmentation and metabolic function of intracellular free Mg2+. Magnes Res 19:225–236

    PubMed  Google Scholar 

  11. Spitzer J, Poolman B (2005) Electrochemical structure of the crowded cytoplasm. Trends Biochem Sci 30:536–541

    Article  PubMed  CAS  Google Scholar 

  12. Naora H, Naora H, Mirsky AE et al (1961) Magnesium and calcium in isolated cell nuclei. J Gen Physiol 44:713–742

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Arrio-Dupont M, Cribier S, Foucault G et al (1996) Diffusion of fluorescently labeled macromolecules in cultured muscle cells. Biophys J 70:2327–2332

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Maughan DW, Godt RE (2001) Protein osmotic pressure and the state of water in frog myoplasm. Biophys J 80:435–442

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Hou L, Lanni F, Luby-Phelps K (1990) Tracer diffusion in F-actin and Ficoll mixtures. Towards a model for cytoplasm. Biophys J 58:31–43

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Maughan DW, Henkin JA, Vigoreaux JO (2005) Concentrations of glycolytic enzymes and other cytosolic proteins in the diffusible fraction of a vertebrate muscle proteome. Mol Cell Proteomics 4:1541–1549

    Article  PubMed  CAS  Google Scholar 

  17. Cuneo P, Magri E, Verzola A et al (1992) ‘Macromolecular crowding’ is a primary factor in the organization of the cytoskeleton. Biochem J 281:507–512

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604

    Article  PubMed  CAS  Google Scholar 

  19. Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Birbeck MSC, Reid E (1956) Development of an improved medium for the isolation of liver mitochondria. J Biophys Biochem Cytol 2:609–624

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Wicker U, Bücheler K, Gellerich FN et al (1993) Effect of macromolecules on the structure of the mitochondrial inter-membrane space and the regulation of hexokinase. Biochim Biophys Acta 1142:228–239

    Article  PubMed  CAS  Google Scholar 

  22. Laterveer FD, Gellerich FN, Nicolay K (2005) Macromolecules increase the channeling of ADP from externally associated hexokinase to the matrix of mitochondria. Eur J Biochem 232:569–577

    Google Scholar 

  23. Antonenkov VD, Sormunen RT, Hiltunen JK (2004) The behavior of peroxisomes in vitro: mammalian peroxisomes are osmotically sensitive particles. Am J Physiol Cell Physiol 287:C1623–C1635

    Article  PubMed  CAS  Google Scholar 

  24. Oku T, Kawahara H, Tomia G (1971) The Hill reaction and oxygen uptake in isolated pine chloroplasts. Plant Cell Physiol 12:559–566

    CAS  Google Scholar 

  25. Morré DJ, Mollenhauer HH (1964) Isolation of the Golgi apparatus from plant cells. J Cell Biol 23:295–305

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cunha S, Woldringh CL, Odijk T (2001) Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids. J Struct Biol 136:53–66

    Article  PubMed  CAS  Google Scholar 

  27. Takahashi Y, Asao T (1974) Study of the nuclei isolated from newt embryos by the use of Ficoll. Dev Growth Differ 16:281–294

    Article  CAS  Google Scholar 

  28. Mason JA, Mellor J (1997) Isolation of nuclei for chromatin analysis in fission yeast. Nucleic Acids Res 25:4700–4701

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Kornberg A (2000) Ten commandments, lessons from the enzymology of DNA replication. J Bacteriol 182:3613–3618

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Seksek O, Biwersi J, Verkman AS (1997) Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 138:131–142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Hancock R, Hadj-Sahraoui Y (2009) Isolation of cell nuclei using inert macromolecules to mimic the crowded cytoplasm. PLoS One 4:e7560

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cassany A, Gerace L (2009) Reconstitution of nuclear import in permeabilized cells. Methods Mol Biol 464:181–205

    Article  PubMed  PubMed Central  Google Scholar 

  33. Handwerger KE, Gall JG (2006) Subnuclear organelles: new insights into form and function. Trends Cell Biol 16:19–26

    Article  PubMed  CAS  Google Scholar 

  34. Hancock R (2012) Structure of metaphase chromosomes: a role for effects of macromolecular crowding. PLoS One 7:e36045

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jason Swedlow (Wellcome Trust Biocentre, University of Dundee, Scotland) for HeLa cells expressing GFP-coilin and David Bazett-Jones (Hospital for Sick Children, Toronto, Canada) for U2OS cells expressing GFP-PML isoform IV (originally from J. Taylor, Medical College of Wisconsin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Hancock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hancock, R., Hadj-Sahraoui, Y. (2015). Isolation of Nuclei in Media Containing an Inert Polymer to Mimic the Crowded Cytoplasm. In: Hancock, R. (eds) The Nucleus. Methods in Molecular Biology, vol 1228. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1680-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1680-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1679-5

  • Online ISBN: 978-1-4939-1680-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics