Skip to main content

Cell Type-Specific Affinity Purification of Nuclei for Chromatin Profiling in Whole Animals

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1228))

Abstract

Analyzing cell differentiation during development in a complex organism requires the analysis of expression and chromatin profiles in individual cell types. Our laboratory has developed a simple and generally applicable strategy to purify specific cell types from whole organisms for simultaneous analysis of chromatin and expression. The method, termed INTACT for Isolation of Nuclei TAgged in specific Cell Types, depends on the expression of an affinity-tagged nuclear envelope protein in the cell type of interest. These nuclei can be affinity-purified from the total pool of nuclei and used as a source for RNA and chromatin. The method serves as a simple and scalable alternative to FACS sorting or laser capture microscopy to circumvent the need for expensive equipment and specialized skills. This chapter provides detailed protocols for the cell-type specific purification of nuclei from Caenorhabditis elegans.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ng RK, Gurdon JB (2008) Epigenetic inheritance of cell differentiation status. Cell Cycle 7:1173–1177

    Article  PubMed  CAS  Google Scholar 

  2. Yuan G, Zhu B (2012) Histone variants and epigenetic inheritance. Biochim Biophys Acta 1819:222–229

    Article  CAS  Google Scholar 

  3. Azuara V, Perry P, Sauer S et al (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538

    Article  PubMed  CAS  Google Scholar 

  4. Fox RM, Watson JD, Von Stetina SE et al (2007) The embryonic muscle transcriptome of Caenorhabditis elegans. Genome Biol 8:R188

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miller MR, Robinson KJ, Cleary MD, Doe CQ (2009) TU-tagging: cell type-specific RNA isolation from intact complex tissues. Nat Methods 6:439–441

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Roy PJ, Stuart JM, Lund J, Kim SK (2002) Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature 418:975–979

    PubMed  CAS  Google Scholar 

  7. Bonn S, Zinzen RP, Girardot C et al (2012) Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 44:148–156

    Article  PubMed  CAS  Google Scholar 

  8. Bonn S, Zinzen RP, Perez-Gonzalez A et al (2012) Cell type-specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP. Nat Protoc 7:978–994

    Article  PubMed  CAS  Google Scholar 

  9. Fox RM, Von Stetina SE, Barlow SJ et al (2005) A gene expression fingerprint of C. elegans embryonic motor neurons. BMC Genomics 6:42

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sugiyama T, Rodriguez RT, McLean GW et al (2007) Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc Natl Acad Sci U S A 104:175–180

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Von Stetina SE, Watson JD, Fox RM et al (2007) Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biol 8:R135

    Article  Google Scholar 

  12. Haenni S, Ji Z, Hoque M et al (2012) Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3'-end-seq. Nucleic Acids Res 40:6304–6318

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Southall TD, Gold KS, Egger B et al (2013) Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell 26:101–112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Burgemeister R (2011) Laser capture microdissection of FFPE tissue sections bridging the gap between microscopy and molecular analysis. Methods Mol Biol 724:105–115

    Article  PubMed  CAS  Google Scholar 

  15. Erickson HS, Albert PS, Gillespie JW, Rodriguez-Canales J, Marston Linehan W, Pinto PA et al (2009) Quantitative RT-PCR gene expression analysis of laser microdissected tissue samples. Nat Protoc 4:902–922

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Golubeva Y, Salcedo R, Mueller C et al (2013) Laser capture microdissection for protein and NanoString RNA analysis. Methods Mol Biol 931:213–257

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Neira M, Azen E (2002) Gene discovery with laser capture microscopy. Methods Enzymol 356:282–289

    Article  PubMed  CAS  Google Scholar 

  18. Rabien A (2010) Laser microdissection. Meth Mol Biol 576:39–47

    Article  CAS  Google Scholar 

  19. Deal RB, Henikoff S (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev Cell 18:1030–1040

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Deal RB, Henikoff S (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6:56–68

    Article  PubMed  CAS  Google Scholar 

  21. Steiner FA, Talbert PB, Kasinathan S et al (2012) Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res 22:766–777

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Amin NM, Greco TM, Kuchenbrod LM et al (2014) Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT). Development 141:962–973

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Henry GL, Davis FP, Picard S et al (2012) Cell type-specific genomics of Drosophila neurons. Nucleic Acids Res 40:9691–9704

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by HHMI, NIH (U01-HG004274), and the Swiss National Science Foundation (PBSKP3-124362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian A. Steiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Steiner, F.A., Henikoff, S. (2015). Cell Type-Specific Affinity Purification of Nuclei for Chromatin Profiling in Whole Animals. In: Hancock, R. (eds) The Nucleus. Methods in Molecular Biology, vol 1228. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1680-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1680-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1679-5

  • Online ISBN: 978-1-4939-1680-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics