Skip to main content

PET Imaging for Tyrosine Kinase Inhibitor (TKI) Biodistribution in Mice

  • Protocol
  • First Online:
Book cover Apoptosis and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1219))

  • 3413 Accesses

Abstract

Receptor tyrosine kinases play a critical role in cell growth, survival, and proliferation, and are considered potential molecular targets for the treatment of cancer. Although several tyrosine kinase inhibitors (TKIs), such as erlotinib and gefitinib, have demonstrated clinical efficacy via the inhibition of the epidermal growth factor receptor (EGFR), most TKIs are only effective in a small proportion of patients. Positron emission tomography (PET) imaging is a methodology of molecular imaging based on nuclear imaging. PET imaging in combination with radiolabeled TKIs improves accuracy of quantitative imaging strategies and the probability of successful drug development, and may facilitate the stratification of patients. Here, we describe a protocol for PET imaging using radiolabeled TKI in preclinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matthews PM, Rabiner EA, Passchier J, Gunn RN (2012) Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol 73(2):175–186

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Robinson DR, Wu YM, Lin SF (2000) The protein tyrosine kinase family of the human genome. Oncogene 19(49):5548–5557

    Article  PubMed  CAS  Google Scholar 

  3. Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4(5):361–370

    Article  PubMed  CAS  Google Scholar 

  4. Choura M, Rebai A (2011) Receptor tyrosine kinases: from biology to pathology. J Recept Signal Transduct Res 31(6):387–394

    Article  PubMed  CAS  Google Scholar 

  5. Casaletto JB, McClatchey AI (2012) Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer 12(6):387–400

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Wang JQ, Gao M, Miller KD, Sledge GW, Zheng QH (2006) Synthesis of [11C]Iressa as a new potential PET cancer imaging agent for epidermal growth factor receptor tyrosine kinase. Bioorg Med Chem Lett 16(15):4102–4106

    Article  PubMed  CAS  Google Scholar 

  7. Prenen H, Deroose C, Vermaelen P, Sciot R, Debiec-Rychter M, Stroobants S, Mortelmans L, Schoffski P, Van Oosterom A (2006) Establishment of a mouse gastrointestinal stromal tumour model and evaluation of response to imatinib by small animal positron emission tomography. Anticancer Res 26(2A):1247–1252

    PubMed  CAS  Google Scholar 

  8. Memon AA, Weber B, Winterdahl M, Jakobsen S, Meldgaard P, Madsen HH, Keiding S, Nexo E, Sorensen BS (2011) PET imaging of patients with non-small cell lung cancer employing an EGF receptor targeting drug as tracer. Br J Cancer 105(12):1850–1855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Meng X, Loo BW Jr, Ma L, Murphy JD, Sun X, Yu J (2011) Molecular imaging with 11C-PD153035 PET/CT predicts survival in non-small cell lung cancer treated with EGFR-TKI: a pilot study. J Nucl Med 52(10):1573–1579

    Article  PubMed  CAS  Google Scholar 

  10. Weber B, Winterdahl M, Memon A, Sorensen BS, Keiding S, Sorensen L, Nexo E, Meldgaard P (2011) Erlotinib accumulation in brain metastases from non-small cell lung cancer: visualization by positron emission tomography in a patient harboring a mutation in the epidermal growth factor receptor. J Thorac Oncol 6(7):1287–1289

    Article  PubMed  Google Scholar 

  11. Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, van Dongen GA (2005) (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 46(11):1898–1906

    PubMed  CAS  Google Scholar 

  12. Shah C, Miller TW, Wyatt SK, McKinley ET, Olivares MG, Sanchez V, Nolting DD, Buck JR, Zhao P, Ansari MS, Baldwin RM, Gore JC, Schiff R, Arteaga CL, Manning HC (2009) Imaging biomarkers predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer. Clin Cancer Res 15(14):4712–4721

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. van der Bilt AR, Terwisscha van Scheltinga AG, Timmer-Bosscha H, Schroder CP, Pot L, Kosterink JG, van der Zee AG, Lub-de Hooge MN, de Jong S, de Vries EG, Reyners AK (2012) Measurement of tumor VEGF-A levels with 89Zr-bevacizumab PET as an early biomarker for the antiangiogenic effect of everolimus treatment in an ovarian cancer xenograft model. Clin Cancer Res 18(22):6306–6314

    Article  PubMed  Google Scholar 

  14. Visser GW, van der Wilt CL, Wedzinga R, Peters GJ, Herscheid JD (1996) 18F-radiopharmacokinetics of [18F]-5-fluorouracil in a mouse bearing two colon tumors with a different 5-fluorouracil sensitivity: a study for a correlation with oncological results. Nucl Med Biol 23(3):333–342

    Article  PubMed  CAS  Google Scholar 

  15. Murakami Y, Matsuya T, Kita A, Yamanaka K, Noda A, Mitsuoka K, Nakahara T, Miyoshi S, Nishimura S (2013) Radiosynthesis, biodistribution and imaging of [11C]YM155, a novel survivin suppressant, in a human prostate tumor-xenograft mouse model. Nucl Med Biol 40(2):221–226

    Article  PubMed  CAS  Google Scholar 

  16. Gangloff A, Hsueh WA, Kesner AL, Kiesewetter DO, Pio BS, Pegram MD, Beryt M, Townsend A, Czernin J, Phelps ME, Silverman DH (2005) Estimation of paclitaxel biodistribution and uptake in human-derived xenografts in vivo with (18)F-fluoropaclitaxel. J Nucl Med 46(11):1866–1871

    PubMed  CAS  Google Scholar 

  17. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153):561–566

    Article  PubMed  CAS  Google Scholar 

  18. Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Dennery P, Stevenson DK, Benaron DA (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66(4):523–531

    Article  PubMed  CAS  Google Scholar 

  19. Edinger M, Sweeney TJ, Tucker AA, Olomu AB, Negrin RS, Contag CH (1999) Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1(4):303–310

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Doki Y, Murakami K, Yamaura T, Sugiyama S, Misaki T, Saiki I (1999) Mediastinal lymph node metastasis model by orthotopic intrapulmonary implantation of Lewis lung carcinoma cells in mice. Br J Cancer 79(7–8):1121–1126

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Fushiki H, Kanoh-Azuma T, Katoh M, Kawabata K, Jiang J, Tsuchiya N, Satow A, Tamai Y, Hayakawa Y (2009) Quantification of mouse pulmonary cancer models by microcomputed tomography imaging. Cancer Sci 100(8):1544–1549

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Fushiki Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fushiki, H., Murakami, Y., Miyoshi, S., Nishimura, S. (2015). PET Imaging for Tyrosine Kinase Inhibitor (TKI) Biodistribution in Mice. In: Mor, G., Alvero, A. (eds) Apoptosis and Cancer. Methods in Molecular Biology, vol 1219. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1661-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1661-0_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1660-3

  • Online ISBN: 978-1-4939-1661-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics